IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2822-d340506.html
   My bibliography  Save this article

A Systematic Review of Coastal Vulnerability Mapping

Author

Listed:
  • Anamaria Bukvic

    (Department of Geography, Center for Coastal Studies, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA)

  • Guillaume Rohat

    (Institute of Environmental Sciences, University of Geneva, 1205 Geneva, Switzerland)

  • Alex Apotsos

    (Department of Geosciences, Williams College, Williamstown, MA 01267, USA)

  • Alex de Sherbinin

    (Center for International Earth Science Information Network, The Earth Institute at Columbia University, Palisades, NY 10025, USA)

Abstract

Coastal areas worldwide represent an aggregation of population and assets of growing economic, geopolitical, and sociocultural significance, yet their functions are increasingly challenged by worsening coastal hazards. Vulnerability assessments have been recognized as one way we can better understand which geographic areas and segments of society are more susceptible to adverse impacts from different stressors or hazards. The aims of this paper are to evaluate the state of coastal vulnerability assessment mapping efforts and to identify opportunities for advancement and refinement that will lead to more cohesive, impactful, and policy-relevant coastal vulnerability studies. We conducted a systematic review of the literature that addresses physical and social vulnerability to coastal hazards and contains corresponding mapping products. The content was analyzed for the scale of analysis, location, disciplinary focus, conceptual framework, metrics used, methodological approach, data sources, mapping output, and policy relevance. Results showed that most Coastal Vulnerability Mapping Assessments (CVMAs) are conducted at the local level using a range of methodologies, often with limited inclusion of social considerations and limited discussion of policy relevance. Based on our analysis, we provide seven recommendations for the advancement of this field that would improve CVMAs’ methodological rigor, policy relevance, and alignment with other vulnerability assessment paradigms.

Suggested Citation

  • Anamaria Bukvic & Guillaume Rohat & Alex Apotsos & Alex de Sherbinin, 2020. "A Systematic Review of Coastal Vulnerability Mapping," Sustainability, MDPI, vol. 12(7), pages 1-26, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2822-:d:340506
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2822/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2822/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefan Kienberger & Thomas Blaschke & Rukhe Zaidi, 2013. "A framework for spatio-temporal scales and concepts from different disciplines: the ‘vulnerability cube’," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1343-1369, September.
    2. Kevin M. Geoghegan & Patrick Fitzpatrick & Randall L. Kolar & Kendra M. Dresback, 2018. "Evaluation of a synthetic rainfall model, P-CLIPER, for use in coastal flood modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 699-726, June.
    3. Yun Xing & Qiuhua Liang & Gang Wang & Xiaodong Ming & Xilin Xia, 2019. "City-scale hydrodynamic modelling of urban flash floods: the issues of scale and resolution," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 473-496, March.
    4. Manik Mahapatra & R. Ratheesh & A. S. Rajawat, 2017. "Storm surge vulnerability assessment of Saurashtra coast, Gujarat, using GIS techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 821-831, March.
    5. Barbara Neumann & Athanasios T Vafeidis & Juliane Zimmermann & Robert J Nicholls, 2015. "Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-34, March.
    6. Axel Creach & Sophie Pardo & Patrice Guillotreau & Denis Mercier, 2015. "The use of a micro-scale index to identify potential death risk areas due to coastal flood surges: lessons from Storm Xynthia on the French Atlantic coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1679-1710, July.
    7. Jeffrey A. Groen & Mark J. Kutzbach & Anne E. Polivka, 2020. "Storms and Jobs: The Effect of Hurricanes on Individuals’ Employment and Earnings over the Long Term," Journal of Labor Economics, University of Chicago Press, vol. 38(3), pages 653-685.
    8. S. Eriksen & P. Kelly, 2007. "Developing Credible Vulnerability Indicators for Climate Adaptation Policy Assessment," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(4), pages 495-524, May.
    9. Jeffrey A. Groen† & Mark J. Kutzbach & Anne E. Polivka‡, 2015. "Storms and Jobs: The Effect of Hurricanes on Individuals’ Employment and Earnings over the Long Term," Working Papers 15-21r, Center for Economic Studies, U.S. Census Bureau.
    10. Kevin M. Geoghegan & Patrick Fitzpatrick & Randall L. Kolar & Kendra M. Dresback, 2018. "Correction to: Evaluation of a synthetic rainfall model, P-CLIPER, for use in coastal flood modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 491-491, October.
    11. Parijat Chakrabarti & Margaret Frye, 2017. "A mixed-methods framework for analyzing text data: Integrating computational techniques with qualitative methods in demography," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(42), pages 1351-1382.
    12. Alwang, Jeffrey & Siegel, Paul B. & Jorgensen, Steen L., 2001. "Vulnerability : a view from different disciplines," Social Protection Discussion Papers and Notes 23304, The World Bank.
    13. Solomon M. Hsiang & Amir S. Jina, 2014. "The Causal Effect of Environmental Catastrophe on Long-Run Economic Growth: Evidence From 6,700 Cyclones," NBER Working Papers 20352, National Bureau of Economic Research, Inc.
    14. Alex de Sherbinin & Guillem Bardy, 2015. "Social vulnerability to floods in two coastal megacities: New York City and Mumbai," Vienna Yearbook of Population Research, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna, vol. 13(1), pages 131-165.
    15. Kelsey Ellis & Linda Sylvester & Jill Trepanier, 2015. "Spatiotemporal patterns of extreme hurricanes impacting US coastal cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2733-2749, February.
    16. Susan Hanson & Robert Nicholls & N. Ranger & S. Hallegatte & J. Corfee-Morlot & C. Herweijer & J. Chateau, 2011. "A global ranking of port cities with high exposure to climate extremes," Climatic Change, Springer, vol. 104(1), pages 89-111, January.
    17. Thecla I. Akukwe & Chinedu Ogbodo, 2015. "Spatial Analysis of Vulnerability to Flooding in Port Harcourt Metropolis, Nigeria," SAGE Open, , vol. 5(1), pages 21582440155, March.
    18. Sierra Woodruff & Todd K. BenDor & Aaron L. Strong, 2018. "Fighting the inevitable: infrastructure investment and coastal community adaptation to sea level rise," System Dynamics Review, System Dynamics Society, vol. 34(1-2), pages 48-77, January.
    19. Thomas Wahl & Shaleen Jain & Jens Bender & Steven D. Meyers & Mark E. Luther, 2015. "Increasing risk of compound flooding from storm surge and rainfall for major US cities," Nature Climate Change, Nature, vol. 5(12), pages 1093-1097, December.
    20. Lisa Kleinosky & Brent Yarnal & Ann Fisher, 2007. "Vulnerability of Hampton Roads, Virginia to Storm-Surge Flooding and Sea-Level Rise," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(1), pages 43-70, January.
    21. Kieran T. Bhatia & Gabriel A. Vecchi & Thomas R. Knutson & Hiroyuki Murakami & James Kossin & Keith W. Dixon & Carolyn E. Whitlock, 2019. "Recent increases in tropical cyclone intensification rates," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    22. Yung-Jaan Lee & Shih-Chien Lin & Chiao-Chi Chen, 2016. "Mapping Cross-Boundary Climate Change Vulnerability—Case Study of the Hualien and Taitung Area, Taiwan," Sustainability, MDPI, vol. 8(1), pages 1-17, January.
    23. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    24. Haunani Kane & Charles Fletcher & L. Frazer & Tiffany Anderson & Matthew Barbee, 2015. "Modeling sea-level rise vulnerability of coastal environments using ranked management concerns," Climatic Change, Springer, vol. 131(2), pages 349-361, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rabia Yahia Meddah & Tarik Ghodbani & Rachida Senouci & Walid Rabehi & Lia Duarte & Ana Cláudia Teodoro, 2023. "Estimation of the Coastal Vulnerability Index Using Multi-Criteria Decision Making: The Coastal Social–Ecological System of Rachgoun, Western Algeria," Sustainability, MDPI, vol. 15(17), pages 1-28, August.
    2. Qianxin Su & Zhiqiang Li & Gaocong Li & Daoheng Zhu & Pengpeng Hu, 2021. "Application of the Coastal Hazard Wheel for Coastal Multi-Hazard Assessment and Management in the Guang-Dong-Hongkong-Macao Greater Bay Area," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    3. Aishwarya Narendr & S. Vinay & Bharath Haridas Aithal & Sutapa Das, 2022. "Multi-dimensional parametric coastal flood risk assessment at a regional scale using GIS," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9569-9597, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof Karbownik & Anthony Wray, 2019. "Long-Run Consequences of Exposure to Natural Disasters," Journal of Labor Economics, University of Chicago Press, vol. 37(3), pages 949-1007.
    2. Gargiulo, Carmela & Battarra, Rosaria & Tremiterra, Maria Rosa, 2020. "Coastal areas and climate change: A decision support tool for implementing adaptation measures," Land Use Policy, Elsevier, vol. 91(C).
    3. Ortega, Francesc & Taspinar, Süleyman, 2016. "Rising Sea Levels and Sinking Property Values: The Effects of Hurricane Sandy on New York's Housing Market," IZA Discussion Papers 10374, Institute of Labor Economics (IZA).
    4. Ortega, Francesc & Taṣpınar, Süleyman, 2018. "Rising sea levels and sinking property values: Hurricane Sandy and New York’s housing market," Journal of Urban Economics, Elsevier, vol. 106(C), pages 81-100.
    5. Ruby W. Grantham & Murray A. Rudd, 2017. "Household susceptibility to hydrological change in the Lower Mekong Basin," Natural Resources Forum, Blackwell Publishing, vol. 41(1), pages 3-17, February.
    6. Kerstin Krellenberg & Juliane Welz, 2017. "Assessing Urban Vulnerability in the Context of Flood and Heat Hazard: Pathways and Challenges for Indicator-Based Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 132(2), pages 709-731, June.
    7. Muhammad Ziaul Hoque & Shenghui Cui & Lilai Xu & Imranul Islam & Jianxiong Tang & Shengping Ding, 2019. "Assessing Agricultural Livelihood Vulnerability to Climate Change in Coastal Bangladesh," IJERPH, MDPI, vol. 16(22), pages 1-21, November.
    8. Shabana Khan, 2012. "Vulnerability assessments and their planning implications: a case study of the Hutt Valley, New Zealand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1587-1607, November.
    9. Ashley C. Freeman & Walker S. Ashley, 2017. "Changes in the US hurricane disaster landscape: the relationship between risk and exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 659-682, September.
    10. Rio Yonson & Ilan Noy & JC Gaillard, 2018. "The measurement of disaster risk: An example from tropical cyclones in the Philippines," Review of Development Economics, Wiley Blackwell, vol. 22(2), pages 736-765, May.
    11. Pelli, Martino & Tschopp, Jeanne & Bezmaternykh, Natalia & Eklou, Kodjovi M., 2023. "In the eye of the storm: Firms and capital destruction in India," Journal of Urban Economics, Elsevier, vol. 134(C).
    12. Agustín Indaco & Francesc Ortega & Süleyman Taṣpınar, 2021. "Hurricanes, flood risk and the economic adaptation of businesses," Journal of Economic Geography, Oxford University Press, vol. 21(4), pages 557-591.
    13. Adriana Kocornik-Mina & Thomas K. J. McDermott & Guy Michaels & Ferdinand Rauch, 2020. "Flooded Cities," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 35-66, April.
    14. Jerch, Rhiannon & Kahn, Matthew E. & Lin, Gary C., 2023. "Local public finance dynamics and hurricane shocks," Journal of Urban Economics, Elsevier, vol. 134(C).
    15. Laura A. Bakkensen & Robert O. Mendelsohn, 2016. "Risk and Adaptation: Evidence from Global Hurricane Damages and Fatalities," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(3), pages 555-587.
    16. Emek Basker & Javier Miranda, 2014. "Taken by Storm: Business Financing, Survival, and Contagion in the Aftermath of Hurricane Katrina," Working Papers 1406, Department of Economics, University of Missouri, revised 23 Oct 2014.
    17. Davlasheridze, Meri & Fisher-Vanden, Karen & Allen Klaiber, H., 2017. "The effects of adaptation measures on hurricane induced property losses: Which FEMA investments have the highest returns?," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 93-114.
    18. William G. Bennett & Harshinie Karunarathna & Yunqing Xuan & Muhammad S. B. Kusuma & Mohammad Farid & Arno A. Kuntoro & Harkunti P. Rahayu & Benedictus Kombaitan & Deni Septiadi & Tri N. A. Kesuma & R, 2023. "Modelling compound flooding: a case study from Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 277-305, August.
    19. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    20. Itziar González Tánago & Julia Urquijo & Veit Blauhut & Fermín Villarroya & Lucia De Stefano, 2016. "Learning from experience: a systematic review of assessments of vulnerability to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 951-973, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2822-:d:340506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.