IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i12p5048-d374216.html
   My bibliography  Save this article

Foreign-Funded Enterprises and Pollution Halo Hypothesis: A Spatial Econometric Analysis of Thirty Chinese Regions

Author

Listed:
  • Alexandre Repkine

    (Economics Department, College of Social Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Korea)

  • Dongki Min

    (Economics Department, College of Social Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Korea)

Abstract

China is one of the world’s major environmental polluters, therefore, Chinese environmental efficiency is an issue of global importance. In this study, we aim to identify economic factors affecting environmental efficiency scores in different regions of China from a spatial econometric perspective. We measure environmental efficiency scores, relative to the theoretically consistent production possibilities frontier estimated, according to a novel iterative methodology. As expected, we find that environmental efficiency scores are negatively affected by the prevalence of heavy industry sector in the economy, with a higher share of coal as a source of energy exacerbating the problem. We also find evidence that strongly support the pollution halo hypothesis, which credits foreign-funded enterprises with producing in a more environmentally-friendly way. Surprisingly, we find a negative association between the share of tertiary sectors in a regional economy and environmental efficiency—emphasizing the need to address the indirect effects produced on the environment by the seemingly innocuous sectors, such as the hotel sector. We encourage the creation of foreign-funded enterprises, and support formulating environmental protection policies that consider the indirect effects various economic sectors have on the environment.

Suggested Citation

  • Alexandre Repkine & Dongki Min, 2020. "Foreign-Funded Enterprises and Pollution Halo Hypothesis: A Spatial Econometric Analysis of Thirty Chinese Regions," Sustainability, MDPI, vol. 12(12), pages 1-24, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:5048-:d:374216
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/12/5048/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/12/5048/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Long, Xingle & Wu, Chao & Zhang, Jijian & Zhang, Jing, 2018. "Environmental efficiency for 192 thermal power plants in the Yangtze River Delta considering heterogeneity: A metafrontier directional slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3962-3971.
    2. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    3. Brian R. Copeland & M. Scott Taylor, 2004. "Trade, Growth, and the Environment," Journal of Economic Literature, American Economic Association, vol. 42(1), pages 7-71, March.
    4. Chenyu Lu & Peng Meng & Xueyan Zhao & Lu Jiang & Zilong Zhang & Bing Xue, 2019. "Assessing the Economic-Environmental Efficiency of Energy Consumption and Spatial Patterns in China," Sustainability, MDPI, vol. 11(3), pages 1-17, January.
    5. Mary E. Lovely & Zixuan Huang, 2018. "Foreign Direct Investment in China's High‐technology Manufacturing Industries," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 26(5), pages 104-126, September.
    6. Yang Zhou & Jintao Fu & Ying Kong & Rui Wu, 2018. "How Foreign Direct Investment Influences Carbon Emissions, Based on the Empirical Analysis of Chinese Urban Data," Sustainability, MDPI, vol. 10(7), pages 1-19, June.
    7. Cuesta, Rafael A. & Lovell, C.A. Knox & Zofío, José L., 2009. "Environmental efficiency measurement with translog distance functions: A parametric approach," Ecological Economics, Elsevier, vol. 68(8-9), pages 2232-2242, June.
    8. Zhang, Ping & Shi, XunPeng & Sun, YongPing & Cui, Jingbo & Shao, Shuai, 2019. "Have China's provinces achieved their targets of energy intensity reduction? Reassessment based on nighttime lighting data," Energy Policy, Elsevier, vol. 128(C), pages 276-283.
    9. Charles F. Manski, 1993. "Identification of Endogenous Social Effects: The Reflection Problem," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 531-542.
    10. Alexandre Repkine & Dongki Min, 2018. "An iterative approach to the estimation of the abatement costs of harmful emissions," Journal of Productivity Analysis, Springer, vol. 49(2), pages 123-136, June.
    11. Zoundi, Zakaria, 2017. "CO2 emissions, renewable energy and the Environmental Kuznets Curve, a panel cointegration approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1067-1075.
    12. Dong, Kangyin & Sun, Renjin & Hochman, Gal & Li, Hui, 2018. "Energy intensity and energy conservation potential in China: A regional comparison perspective," Energy, Elsevier, vol. 155(C), pages 782-795.
    13. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    14. Wang, Yan & Shen, Neng, 2016. "Environmental regulation and environmental productivity: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 758-766.
    15. Zhao, Xueting & Burnett, J. Wesley & Fletcher, Jerald J., 2013. "Spatial Analysis of China Provincial-Level CO2 Emission Intensity," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149006, Agricultural and Applied Economics Association.
    16. Werner Antweiler & Brian R. Copeland & M. Scott Taylor, 2001. "Is Free Trade Good for the Environment?," American Economic Review, American Economic Association, vol. 91(4), pages 877-908, September.
    17. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    18. Wang, H. & Zhou, P. & Zhou, D.Q., 2013. "Scenario-based energy efficiency and productivity in China: A non-radial directional distance function analysis," Energy Economics, Elsevier, vol. 40(C), pages 795-803.
    19. Chen, Nengcheng & Xu, Lei & Chen, Zeqiang, 2017. "Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models," Energy, Elsevier, vol. 134(C), pages 659-671.
    20. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perry Sadorsky, 2021. "Eco-Efficiency for the G18: Trends and Future Outlook," Sustainability, MDPI, vol. 13(20), pages 1-15, October.
    2. Jiansheng You & Guohan Ding & Liyuan Zhang, 2022. "Heterogeneous Dynamic Correlation Research among Industrial Structure Distortion, Two-Way FDI and Carbon Emission Intensity in China," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    3. Alfredo Jimenez & Jeoung Yul Lee & Xavier Ordeñana, 2021. "Introduction: FDI and Institutional Quality: New Insights and Future Perspectives from Emerging and Advanced Economies," Sustainability, MDPI, vol. 13(8), pages 1-4, April.
    4. Cihat Koksal & Guldenur Cetin, 2021. "The International Trade Analysis of Turkey’s Polluting Industries," Journal of Economic Policy Researches, Istanbul University, Faculty of Economics, vol. 8(2), pages 257-275, July.
    5. Zhou, Hao & Zheng, Mingbo, 2024. "Foreign direct investment and green innovation in China: An examination of quantile regression," Innovation and Green Development, Elsevier, vol. 3(3).
    6. Ernest Baba Ali & Bright Akwasi Gyamfi & Paul Adjei Kwakwa & Ebenezer Agbozo, 2024. "Transitioning to low carbon economy among OECD countries: Do renewable energy, globalization and higher economic growth matter?," Energy & Environment, , vol. 35(8), pages 4248-4271, December.
    7. Qiongzhi Liu & Jun Hao, 2022. "Regional Differences and Influencing Factors of Carbon Emission Efficiency in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 14(8), pages 1-15, April.
    8. Duoxun Ba & Jing Zhang & Suocheng Dong & Bing Xia & Lin Mu, 2022. "Spatial-Temporal Characteristics and Driving Factors of the Eco-Efficiency of Tourist Hotels in China," IJERPH, MDPI, vol. 19(18), pages 1-24, September.
    9. Yuan Zhao & Tian Zhang & Ting Wu & Shujing Xu & Shuwang Yang, 2021. "Effects of Technological Progress from Different Sources on Haze Pollution in China," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    10. Farrukh, Bekpulatov & Younis, Ijaz & Longsheng, Cheng, 2023. "The impact of natural resource management, innovation, and tourism development on environmental sustainability in low-income countries," Resources Policy, Elsevier, vol. 86(PB).
    11. Vahid Mohamad Taghvaee & Soheila Farokhi & Mohammad Reza Faraji & Davud Rostam-Afschar & Moosa Tatar, 2025. "Nexus of Economic Growth, Economic Structure, and Environmental Pollution: Using a Novel Machine Learning Approach," Sustainability, MDPI, vol. 17(16), pages 1-18, August.
    12. Xiaoyong Qiao & Yongzhe Guo & Pengyang Zhang & Xue Chen, 2024. "Servitization of Manufacturing Industry Export Enterprises, Multinational Corporation GVC Activities and Pollution Reduction in China," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 14(1), pages 1-8.
    13. Alexandru Chiriluș & Adrian Costea, 2023. "The Effect of FDI on Environmental Degradation in Romania: Testing the Pollution Haven Hypothesis," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    14. Jiansheng Qu & Lina Liu & Jingjing Zeng & Tek Narayan Maraseni & Zhiqiang Zhang, 2022. "City-Level Determinants of Household CO 2 Emissions per Person: An Empirical Study Based on a Large Survey in China," Land, MDPI, vol. 11(6), pages 1-14, June.
    15. Xu Guo & Lin Fu & Xiaohua Sun, 2021. "Can Environmental Regulations Promote Greenhouse Gas Abatement in OECD Countries? Command-and-Control vs. Market-Based Policies," Sustainability, MDPI, vol. 13(12), pages 1-18, June.
    16. Qianqian Wu & Rong Wang, 2023. "Do Environmental Regulation and Foreign Direct Investment Drive Regional Air Pollution in China?," Sustainability, MDPI, vol. 15(2), pages 1-16, January.
    17. Zhenjun Gao & Shujie Li & Xiufeng Cao & Yuefen Li, 2022. "Carbon Emission Intensity Characteristics and Spatial Spillover Effects in Counties in Northeast China: Based on a Spatial Econometric Model," Land, MDPI, vol. 11(5), pages 1-19, May.
    18. Assad Ullah & Xinshun Zhao & Unbreen Qayyum & Muhammad Abdul Kamal & Aamir Aijaz Sayed, 2024. "Modeling the Relationship Between Environmental Regulations and Stock Market Growth in China: Evidence Beyond Symmetry," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(1), pages 2460-2481, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iftikhar Yasin & Nawaz Ahmad & M. Aslam Chaudhary, 2020. "Catechizing the Environmental-Impression of Urbanization, Financial Development, and Political Institutions: A Circumstance of Ecological Footprints in 110 Developed and Less-Developed Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(2), pages 621-649, January.
    2. Muhammad Shahbaz & Syed Jawad Hussain Shahzad & Mantu Kumar Mahalik & Perry Sadorsky, 2018. "How strong is the causal relationship between globalization and energy consumption in developed economies? A country-specific time-series and panel analysis," Applied Economics, Taylor & Francis Journals, vol. 50(13), pages 1479-1494, March.
    3. Shahbaz, Muhammad & Nasreen, Samia & Ahmed, Khalid & Hammoudeh, Shawkat, 2017. "Trade openness–carbon emissions nexus: The importance of turning points of trade openness for country panels," Energy Economics, Elsevier, vol. 61(C), pages 221-232.
    4. Llorca, Manuel & Rodriguez-Alvarez, Ana, 2024. "Economic, environmental, and energy equity convergence: Evidence of a multi-speed Europe?," Ecological Economics, Elsevier, vol. 219(C).
    5. Siewers, Samuel & Martínez-Zarzoso, Inmaculada & Baghdadi, Leila, 2024. "Global value chains and firms’ environmental performance," World Development, Elsevier, vol. 173(C).
    6. Shuai Chen & Faqin Lin & Xi Yao & Peng Zhang, 2020. "WTO accession, trade expansion, and air pollution: Evidence from China’s county‐level panel data," Review of International Economics, Wiley Blackwell, vol. 28(4), pages 1020-1045, September.
    7. Marc Audi & Marc Poulin & Khalil Ahmad & Amjad Ali, 2025. "Modeling Disaggregate Globalization to Carbon Emissions in BRICS: A Panel Quantile Regression Analysis," Sustainability, MDPI, vol. 17(6), pages 1-24, March.
    8. Stern, David I., 2014. "The Environmental Kuznets Curve: A Primer," Working Papers 249424, Australian National University, Centre for Climate Economics & Policy.
    9. Lu, Zhou & Mahalik, Mantu Kumar & Mahalik, Hrushikesh & Zhao, Rui, 2022. "The moderating effects of democracy and technology adoption on the relationship between trade liberalisation and carbon emissions," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    10. Vo, Duc Hong & Vo, Anh The & Ho, Chi Minh & Nguyen, Ha Minh, 2020. "The role of renewable energy, alternative and nuclear energy in mitigating carbon emissions in the CPTPP countries," Renewable Energy, Elsevier, vol. 161(C), pages 278-292.
    11. Pascalau, Razvan & Qirjo, Dhimitri, 2017. "TTIP and the Environmental Kuznets Curve," MPRA Paper 80192, University Library of Munich, Germany.
    12. Chintrakarn, Pandej & Millimet, Daniel L., 2006. "The environmental consequences of trade: Evidence from subnational trade flows," Journal of Environmental Economics and Management, Elsevier, vol. 52(1), pages 430-453, July.
    13. Katrin Millock & Natalia Zugravu & Gérard Duchene, 2008. "The Factors Behind CO2 Emission Reduction in Transition Economies," Working Papers 2008.58, Fondazione Eni Enrico Mattei.
    14. Hunjra, Ahmed Imran & Bouri, Elie & Azam, Muhammad & Azam, Rauf I & Dai, Jiapeng, 2024. "Economic growth and environmental sustainability in developing economies," Research in International Business and Finance, Elsevier, vol. 70(PA).
    15. Jeffrey A. Frankel & Andrew K. Rose, 2005. "Is Trade Good or Bad for the Environment? Sorting Out the Causality," The Review of Economics and Statistics, MIT Press, vol. 87(1), pages 85-91, February.
    16. Linda Kleemann & Awudu Abdulai, 2013. "The Impact Of Trade And Economic Growth On The Environment: Revisiting The Cross‐Country Evidence," Journal of International Development, John Wiley & Sons, Ltd., vol. 25(2), pages 180-205, March.
    17. Lee, Sanghoon & Oh, Dae-Won, 2015. "Economic growth and the environment in China: Empirical evidence using prefecture level data," China Economic Review, Elsevier, vol. 36(C), pages 73-85.
    18. Guangdong Li, 2019. "Spatiotemporal Dynamics of Ecological Total-Factor Energy Efficiency and Their Drivers in China at the Prefecture Level," IJERPH, MDPI, vol. 16(18), pages 1-23, September.
    19. Choi, Jaerim & Hyun, Jay & Kim, Gueyon & Park, Ziho, 2025. "The cleanup of US manufacturing through pollution offshoring," Journal of International Economics, Elsevier, vol. 154(C).
    20. Yu Hao & Yunxia Guo & Haitao Wu, 2022. "The role of information and communication technology on green total factor energy efficiency: Does environmental regulation work?," Business Strategy and the Environment, Wiley Blackwell, vol. 31(1), pages 403-424, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:5048-:d:374216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.