IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i2p52-d319794.html
   My bibliography  Save this article

Quantifying the Effect of Land Use Change Model Coupling

Author

Listed:
  • Oleg Stepanov

    (Institute for Geoinformatics, University of Münster, 48149 Münster, Germany)

  • Gilberto Câmara

    (National Institute for Space Research (INPE), São José dos Campos 12227-010, Brazil)

  • Judith A. Verstegen

    (Institute for Geoinformatics, University of Münster, 48149 Münster, Germany)

Abstract

Land-use change (LUC) is a complex process that is difficult to project. Model collaboration, an aggregate term for model harmonization, comparison and/or coupling, intends to combine the strengths of different models to improve LUC projections. Several model collaborations have been performed, but to the authors’ knowledge, the effect of coupling has not been evaluated quantitatively. Therefore, for a case study of Brazil, we harmonized and coupled the partial equilibrium model GLOBIOM-Brazil and the demand-driven spatially explicit model PLUC, and then compared the coupled-model projections with those by GLOBIOM-Brazil individually. The largest differences between projections occurred in Mato Grosso and Pará, frontiers of agricultural expansion. In addition, we validated both projections for Mato Grosso using land-use maps from remote sensing images. The coupled model clearly outperformed GLOBIOM-Brazil. Reductions in the root mean squared error (RMSE) for LUC dynamics ranged from 31% to 80% and for total land use, from 10% to 57%. Only for pasture, the coupled model performed worse in total land use (RMSE 9% higher). Reasons for a better performance of the coupled model were considered to be, inter alia, the initial map, more spatially explicit information about drivers, and the path-dependence effect in the allocation through the cellular-automata approach of PLUC.

Suggested Citation

  • Oleg Stepanov & Gilberto Câmara & Judith A. Verstegen, 2020. "Quantifying the Effect of Land Use Change Model Coupling," Land, MDPI, vol. 9(2), pages 1-24, February.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:2:p:52-:d:319794
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/2/52/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/2/52/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van Vliet, Jasper & Bregt, Arnold K. & Hagen-Zanker, Alex, 2011. "Revisiting Kappa to account for change in the accuracy assessment of land-use change models," Ecological Modelling, Elsevier, vol. 222(8), pages 1367-1375.
    2. Halofsky, Jessica E. & Hemstrom, Miles A. & Conklin, David R. & Halofsky, Joshua S. & Kerns, Becky K. & Bachelet, Dominique, 2013. "Assessing potential climate change effects on vegetation using a linked model approach," Ecological Modelling, Elsevier, vol. 266(C), pages 131-143.
    3. Yang Chen & Martha M. Bakker & Arend Ligtenberg & Arnold K. Bregt, 2016. "How Are Feedbacks Represented in Land Models?," Land, MDPI, vol. 5(3), pages 1-20, September.
    4. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    5. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    6. Havlík, Petr & Schneider, Uwe A. & Schmid, Erwin & Böttcher, Hannes & Fritz, Steffen & Skalský, Rastislav & Aoki, Kentaro & Cara, Stéphane De & Kindermann, Georg & Kraxner, Florian & Leduc, Sylvain & , 2011. "Global land-use implications of first and second generation biofuel targets," Energy Policy, Elsevier, vol. 39(10), pages 5690-5702, October.
    7. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    8. Meiyappan, Prasanth & Dalton, Michael & O’Neill, Brian C. & Jain, Atul K., 2014. "Spatial modeling of agricultural land use change at global scale," Ecological Modelling, Elsevier, vol. 291(C), pages 152-174.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    2. Andre Deppermann & Petr Havlík & Hugo Valin & Esther Boere & Mario Herrero & Joost Vervoort & Erik Mathijs, 2018. "The market impacts of shortening feed supply chains in Europe," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(6), pages 1401-1410, December.
    3. T. Brunelle & P. Dumas & W. Ben Aoun & Benoit Gabrielle, 2018. "Unravelling Land-Use Change Mechanisms at Global and Regional Scales," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-14, September.
    4. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    5. Solberg, Birger & Moiseyev, Alex & Hansen, Jon Øvrum & Horn, Svein Jarle & Øverland, Margareth, 2021. "Wood for food: Economic impacts of sustainable use of forest biomass for salmon feed production in Norway," Forest Policy and Economics, Elsevier, vol. 122(C).
    6. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    7. F. Castro-Llanos & G. Hyman & J. Rubiano & J. Ramirez-Villegas & H. Achicanoy, 2019. "Climate change favors rice production at higher elevations in Colombia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1401-1430, December.
    8. Speers, Ann E. & Besedin, Elena Y. & Palardy, James E. & Moore, Chris, 2016. "Impacts of climate change and ocean acidification on coral reef fisheries: An integrated ecological–economic model," Ecological Economics, Elsevier, vol. 128(C), pages 33-43.
    9. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    10. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    11. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.
    12. Roberto Roson & Richard Damania, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity: an Assessment of Alternative Scenarios," IEFE Working Papers 84, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    13. Frauke Meyer & Hawal Shamon & Stefan Vögele, 2022. "Dynamics and Heterogeneity of Environmental Attitude, Willingness and Behavior in Germany from 1993 to 2021," Sustainability, MDPI, vol. 14(23), pages 1-22, December.
    14. Phetheet, Jirapat & Hill, Mary C. & Barron, Robert W. & Gray, Benjamin J. & Wu, Hongyu & Amanor-Boadu, Vincent & Heger, Wade & Kisekka, Isaya & Golden, Bill & Rossi, Matthew W., 2021. "Relating agriculture, energy, and water decisions to farm incomes and climate projections using two freeware programs, FEWCalc and DSSAT," Agricultural Systems, Elsevier, vol. 193(C).
    15. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    16. Matteo Fontana & Massimo Tavoni & Simone Vantini, 2020. "Global Sensitivity and Domain-Selective Testing for Functional-Valued Responses: An Application to Climate Economy Models," Papers 2006.13850, arXiv.org, revised Apr 2024.
    17. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    18. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    19. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    20. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:2:p:52-:d:319794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.