IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p16207-d993747.html
   My bibliography  Save this article

Dynamics and Heterogeneity of Environmental Attitude, Willingness and Behavior in Germany from 1993 to 2021

Author

Listed:
  • Frauke Meyer

    (Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, Systemforschung und Technologische Entwicklung (IEK-STE), 52425 Jülich, Germany)

  • Hawal Shamon

    (Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, Systemforschung und Technologische Entwicklung (IEK-STE), 52425 Jülich, Germany)

  • Stefan Vögele

    (Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, Systemforschung und Technologische Entwicklung (IEK-STE), 52425 Jülich, Germany)

Abstract

This paper analyzes environmental attitude, willingness, and behavior using a relatively broad range of survey items from the four Environment Modules of the International Social Survey Programme (ISSP) in Germany. The ISSP Environment Module is a repeated cross-sectional large-scale survey in Germany covering a period of nearly 30 years with four survey waves (1993, 2000, 2010, and 2020). We find that environmental attitude, willingness, and behavior are relatively stable between 1993 and 2010 in Germany. However, in the fourth wave, we find a significant upward trend in attitude and willingness compared to 2010—even though the COVID-19 pandemic was omnipresent at the time of the survey. This could indicate that climate change and environmental issues have gained such significance that they cannot easily be fully displaced by other major events, such as a pandemic. Moreover, we detect systematic heterogeneity in environmental attitude, willingness, and behavior predominantly with respect to respondents’ education, residential region, and political orientation but also some heterogeneity regarding gender, age, and income. Finally, we reveal that the dynamic of environmental attitude, willingness, and behavior also depends on certain socio-demographic characteristics, such as residential region, or political orientation. Our findings are essential for a better understanding of the social feasibility of transformation pathways towards a sustainable energy system.

Suggested Citation

  • Frauke Meyer & Hawal Shamon & Stefan Vögele, 2022. "Dynamics and Heterogeneity of Environmental Attitude, Willingness and Behavior in Germany from 1993 to 2021," Sustainability, MDPI, vol. 14(23), pages 1-22, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16207-:d:993747
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/16207/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/16207/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jurgen Meyerhoff, 2006. "Stated willingness to pay as hypothetical behaviour: Can attitudes tell us more?," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 49(2), pages 209-226.
    2. Seil, Eric & Emmler, Helge, 2020. "Die Folgen von Corona: Eine Auswertung regionaler Daten," WSI Policy Briefs 43, The Institute of Economic and Social Research (WSI), Hans Böckler Foundation.
    3. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    4. Frauke Kreuter & Richard Valliant, 2007. "A survey on survey statistics: What is done and can be done in Stata," Stata Journal, StataCorp LP, vol. 7(1), pages 1-21, February.
    5. Small, Mitchell J. & Wong-Parodi, Gabrielle & Kefford, Benjamin M. & Stringer, Martin & Schmeda-Lopez, Diego R. & Greig, Chris & Ballinger, Benjamin & Wilson, Stephen & Smart, Simon, 2019. "Generating linked technology-socioeconomic scenarios for emerging energy transitions," Applied Energy, Elsevier, vol. 239(C), pages 1402-1423.
    6. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    7. Farjam, Mike & Nikolaychuk, Olexandr & Bravo, Giangiacomo, 2019. "Experimental evidence of an environmental attitude-behavior gap in high-cost situations," Ecological Economics, Elsevier, vol. 166(C), pages 1-1.
    8. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    9. Tabi, Andrea & Hille, Stefanie Lena & Wüstenhagen, Rolf, 2014. "What makes people seal the green power deal? — Customer segmentation based on choice experiment in Germany," Ecological Economics, Elsevier, vol. 107(C), pages 206-215.
    10. Bikrant Kesari & Sunil Atulkar & Satyanarayan Pandey, 2021. "Consumer Purchasing Behaviour towards Eco-Environment Residential Photovoltaic Solar Lighting Systems," Global Business Review, International Management Institute, vol. 22(1), pages 236-254, February.
    11. Chen, Kee Kuo, 2014. "Assessing the effects of customer innovativeness, environmental value and ecological lifestyles on residential solar power systems install intention," Energy Policy, Elsevier, vol. 67(C), pages 951-961.
    12. Manfred Grotenhuis & Ben Pelzer & Rob Eisinga & Rense Nieuwenhuis & Alexander Schmidt-Catran & Ruben Konig, 2017. "When size matters: advantages of weighted effect coding in observational studies," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 62(1), pages 163-167, January.
    13. Blankenberg, Ann-Kathrin & Alhusen, Harm, 2019. "On the determinants of pro-environmental behavior: A literature review and guide for the empirical economist," University of Göttingen Working Papers in Economics 350, University of Goettingen, Department of Economics, revised 2019.
    14. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heiko Rüger & Stefanie Hoherz & Norbert F. Schneider & Herbert Fliege & Maria M. Bellinger & Brenton M. Wiernik, 2023. "The Effects of Urban Living Conditions on Subjective Well-Being: The Case of German Foreign Service Employees," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 18(4), pages 1939-1963, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cotterman, Turner & Small, Mitchell J. & Wilson, Stephen & Abdulla, Ahmed & Wong-Parodi, Gabrielle, 2021. "Applying risk tolerance and socio-technical dynamics for more realistic energy transition pathways," Applied Energy, Elsevier, vol. 291(C).
    2. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    3. Solberg, Birger & Moiseyev, Alex & Hansen, Jon Øvrum & Horn, Svein Jarle & Øverland, Margareth, 2021. "Wood for food: Economic impacts of sustainable use of forest biomass for salmon feed production in Norway," Forest Policy and Economics, Elsevier, vol. 122(C).
    4. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    5. F. Castro-Llanos & G. Hyman & J. Rubiano & J. Ramirez-Villegas & H. Achicanoy, 2019. "Climate change favors rice production at higher elevations in Colombia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1401-1430, December.
    6. Speers, Ann E. & Besedin, Elena Y. & Palardy, James E. & Moore, Chris, 2016. "Impacts of climate change and ocean acidification on coral reef fisheries: An integrated ecological–economic model," Ecological Economics, Elsevier, vol. 128(C), pages 33-43.
    7. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    8. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    9. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.
    10. Roberto Roson & Richard Damania, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity: an Assessment of Alternative Scenarios," IEFE Working Papers 84, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    11. Phetheet, Jirapat & Hill, Mary C. & Barron, Robert W. & Gray, Benjamin J. & Wu, Hongyu & Amanor-Boadu, Vincent & Heger, Wade & Kisekka, Isaya & Golden, Bill & Rossi, Matthew W., 2021. "Relating agriculture, energy, and water decisions to farm incomes and climate projections using two freeware programs, FEWCalc and DSSAT," Agricultural Systems, Elsevier, vol. 193(C).
    12. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    13. Matteo Fontana & Massimo Tavoni & Simone Vantini, 2020. "Global Sensitivity and Domain-Selective Testing for Functional-Valued Responses: An Application to Climate Economy Models," Papers 2006.13850, arXiv.org, revised Jan 2024.
    14. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    15. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    16. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    17. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    18. Fabien Cremona & Sirje Vilbaste & Raoul-Marie Couture & Peeter Nõges & Tiina Nõges, 2017. "Is the future of large shallow lakes blue-green? Comparing the response of a catchment-lake model chain to climate predictions," Climatic Change, Springer, vol. 141(2), pages 347-361, March.
    19. Govorukha, Kristina & Mayer, Philip & Rübbelke, Dirk & Vögele, Stefan, 2020. "Economic disruptions in long-term energy scenarios – Implications for designing energy policy," Energy, Elsevier, vol. 212(C).
    20. Sferra, Fabio & Krapp, Mario & Roming, Niklas & Schaeffer, Michiel & Malik, Aman & Hare, Bill & Brecha, Robert, 2019. "Towards optimal 1.5° and 2 °C emission pathways for individual countries: A Finland case study," Energy Policy, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16207-:d:993747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.