IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i8p5549-d1125732.html
   My bibliography  Save this article

The Roles of Carbon Trading System and Sustainable Energy Strategies in Reducing Carbon Emissions—An Empirical Study in China with Panel Data

Author

Listed:
  • Yue Yu

    (Office of Academic Research, Central Academy of Fine Arts, Beijing 100000, China)

  • Yishuang Xu

    (Manchester Urban Institute, Department of Planning and Environmental Management, University of Manchester, Manchester M13 9PL, UK)

Abstract

Carbon emission reduction is now a vital element in urban development. This study explores the effectiveness of the two emerging methods to reduce carbon emission, which are carbon emissions trading system (ETS) and sustainable energy strategy, in the process of urbanization. We review the policy in the past decades to demonstrate the development of these two streams of carbon emission reduction methods and empirically test the effectiveness of the two methods with panel data across 30 provinces in China from 2009 to 2019. The sustainable energy strategy is confirmed to be effective in reducing carbon emissions in the region, while the effectiveness of carbon emissions trading system varies. We find that (1) substituting fossil fuel with other sustainable energy resources can effectively reduce the carbon emission; (2) the rewards from carbon emissions trading is a good incentive for the enterprises to reduce the carbon emissions; however, it is more tempting in the provinces that have the carbon emissions trading system, although the trading can be conducted across the province boarder. Our findings indicate that the sustainable energy strategy is a good practice and worth expanding to the whole country. It can be difficult for some provinces to transform and adopt the sustainable energy strategy if the fossil fuel is the major source for economic production. It is important to avoid setting fossil fuel as the main source for economic production or household consumption in the urbanization process. Meanwhile the carbon emissions trading system is found to contribute to CO 2 emissions reduction only within the province. Therefore, having more provinces piloting the ETS will help the CO 2 emission reduction further.

Suggested Citation

  • Yue Yu & Yishuang Xu, 2023. "The Roles of Carbon Trading System and Sustainable Energy Strategies in Reducing Carbon Emissions—An Empirical Study in China with Panel Data," IJERPH, MDPI, vol. 20(8), pages 1-20, April.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:8:p:5549-:d:1125732
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/8/5549/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/8/5549/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Hongtao & Yang, Yi & Keller, Arturo A. & Li, Xiang & Feng, Shijin & Dong, Ya-nan & Li, Fengting, 2016. "Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA, Germany, China and South Africa," Applied Energy, Elsevier, vol. 184(C), pages 873-881.
    2. Zhang, Fan & Deng, Xiangzheng & Phillips, Fred & Fang, Chuanglin & Wang, Chao, 2020. "Impacts of industrial structure and technical progress on carbon emission intensity: Evidence from 281 cities in China," Technological Forecasting and Social Change, Elsevier, vol. 154(C).
    3. Beck, Marisa & Rivers, Nicholas & Yonezawa, Hidemichi, 2016. "A rural myth? Sources and implications of the perceived unfairness of carbon taxes in rural communities," Ecological Economics, Elsevier, vol. 124(C), pages 124-134.
    4. Jung, Seok & An, Kyoung-Jin & Dodbiba, Gjergj & Fujita, Toyohisa, 2012. "Regional energy-related carbon emission characteristics and potential mitigation in eco-industrial parks in South Korea: Logarithmic mean Divisia index analysis based on the Kaya identity," Energy, Elsevier, vol. 46(1), pages 231-241.
    5. Wang, Can & Chen, Jining & Zou, Ji, 2005. "Decomposition of energy-related CO2 emission in China: 1957–2000," Energy, Elsevier, vol. 30(1), pages 73-83.
    6. Ma, Chunbo & Stern, David I., 2008. "Biomass and China's carbon emissions: A missing piece of carbon decomposition," Energy Policy, Elsevier, vol. 36(7), pages 2517-2526, July.
    7. Pui, Kiew Ling & Othman, Jamal, 2019. "The influence of economic, technical, and social aspects on energy-associated CO2 emissions in Malaysia: An extended Kaya identity approach," Energy, Elsevier, vol. 181(C), pages 468-493.
    8. Karan Capoor & Philippe Ambrosi, "undated". "State and Trends of the Carbon Market 2009," World Bank Publications - Reports 13403, The World Bank Group.
    9. Huang, Yi & Yi, Qun & Kang, Jing-Xian & Zhang, Ya-Gang & Li, Wen-Ying & Feng, Jie & Xie, Ke-Chang, 2019. "Investigation and optimization analysis on deployment of China coal chemical industry under carbon emission constraints," Applied Energy, Elsevier, vol. 254(C).
    10. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    11. Cenjie Liu & Chunbo Ma & Rui Xie, 2020. "Structural, Innovation and Efficiency Effects of Environmental Regulation: Evidence from China’s Carbon Emissions Trading Pilot," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(4), pages 741-768, April.
    12. Weiping Jia & Xianwen Jia & Ling Wu & Yanbing Guo & Teng Yang & Ermei Wang & Pan Xiao, 2022. "Research on regional differences of the impact of clean energy development on carbon dioxide emission and economic growth," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-9, December.
    13. Gao, Yuning & Li, Meng & Xue, Jinjun & Liu, Yu, 2020. "Evaluation of effectiveness of China's carbon emissions trading scheme in carbon mitigation," Energy Economics, Elsevier, vol. 90(C).
    14. Florens Flues & Alastair Thomas, 2015. "The distributional effects of energy taxes," OECD Taxation Working Papers 23, OECD Publishing.
    15. Shan, Yuli & Liu, Jianghua & Liu, Zhu & Xu, Xinwanghao & Shao, Shuai & Wang, Peng & Guan, Dabo, 2016. "New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors," Applied Energy, Elsevier, vol. 184(C), pages 742-750.
    16. Auffhammer, Maximilian & Carson, Richard T., 2008. "Forecasting the path of China's CO2 emissions using province-level information," Journal of Environmental Economics and Management, Elsevier, vol. 55(3), pages 229-247, May.
    17. Wang, Zhaojing & Jiang, Qingzhe & Dong, Kangyin & Mubarik, Muhammad Shujaat & Dong, Xiucheng, 2020. "Decomposition of the US CO2 emissions and its mitigation potential: An aggregate and sectoral analysis," Energy Policy, Elsevier, vol. 147(C).
    18. repec:wbk:wboper:13402 is not listed on IDEAS
    19. Yue-Jun Zhang & Zhao Liu & Huan Zhang & Tai-De Tan, 2014. "The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 579-595, September.
    20. Pan, Yuling & Dong, Feng, 2023. "Green finance policy coupling effect of fossil energy use rights trading and renewable energy certificates trading on low carbon economy: Taking China as an example," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 658-679.
    21. Lee, Chien-Chiang & Chang, Yu-Fang & Wang, En-Ze, 2022. "Crossing the rivers by feeling the stones: The effect of China's green credit policy on manufacturing firms' carbon emission intensity," Energy Economics, Elsevier, vol. 116(C).
    22. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    23. Zhang, Youguo, 2009. "Structural decomposition analysis of sources of decarbonizing economic development in China; 1992-2006," Ecological Economics, Elsevier, vol. 68(8-9), pages 2399-2405, June.
    24. Sterner, Thomas, 2012. "Distributional effects of taxing transport fuel," Energy Policy, Elsevier, vol. 41(C), pages 75-83.
    25. Xu, Le & Fan, Meiting & Yang, Lili & Shao, Shuai, 2021. "Heterogeneous green innovations and carbon emission performance: Evidence at China's city level," Energy Economics, Elsevier, vol. 99(C).
    26. Jaruwan Chontanawat, 2019. "Driving Forces of Energy-Related CO 2 Emissions Based on Expanded IPAT Decomposition Analysis: Evidence from ASEAN and Four Selected Countries," Energies, MDPI, vol. 12(4), pages 1-23, February.
    27. Wang, Run & Liu, Wenjuan & Xiao, Lishan & Liu, Jian & Kao, William, 2011. "Path towards achieving of China's 2020 carbon emission reduction target--A discussion of low-carbon energy policies at province level," Energy Policy, Elsevier, vol. 39(5), pages 2740-2747, May.
    28. Daiva Makutėnienė & Dalia Perkumienė & Valdemaras Makutėnas, 2022. "Logarithmic Mean Divisia Index Decomposition Based on Kaya Identity of GHG Emissions from Agricultural Sector in Baltic States," Energies, MDPI, vol. 15(3), pages 1-26, February.
    29. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    30. Rogge, Karoline S. & Schneider, Malte & Hoffmann, Volker H., 2011. "The innovation impact of the EU Emission Trading System -- Findings of company case studies in the German power sector," Ecological Economics, Elsevier, vol. 70(3), pages 513-523, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eskander, Shaikh M.S.U. & Nitschke, Jakob, 2021. "Energy use and CO2 emissions in the UK universities: an extended Kaya identity analysis," LSE Research Online Documents on Economics 110764, London School of Economics and Political Science, LSE Library.
    2. Li, Hao & Zhao, Yuhuan & Qiao, Xiaoyong & Liu, Ya & Cao, Ye & Li, Yue & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Weng, Jianfeng, 2017. "Identifying the driving forces of national and regional CO2 emissions in China: Based on temporal and spatial decomposition analysis models," Energy Economics, Elsevier, vol. 68(C), pages 522-538.
    3. Guglielmo Maria Caporale & Gloria Claudio-Quiroga & Luis A. Gil-Alana, 2019. "CO2 Emissions and GDP: Evidence from China," CESifo Working Paper Series 7881, CESifo.
    4. Gen Li & Shihong Zeng & Tengfei Li & Qiao Peng & Muhammad Irfan, 2023. "Analysing the Effect of Energy Intensity on Carbon Emission Reduction in Beijing," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    5. Xing Zhou & Meihua Zhou & Ming Zhang, 2016. "Contrastive analyses of the influence factors of interprovincial carbon emission induced by industry energy in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1405-1433, April.
    6. Cenjie Liu & Chunbo Ma & Rui Xie, 2020. "Structural, Innovation and Efficiency Effects of Environmental Regulation: Evidence from China’s Carbon Emissions Trading Pilot," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(4), pages 741-768, April.
    7. Kirchner, Mathias & Sommer, Mark & Kratena, Kurt & Kletzan-Slamanig, Daniela & Kettner-Marx, Claudia, 2019. "CO2 taxes, equity and the double dividend – Macroeconomic model simulations for Austria," Energy Policy, Elsevier, vol. 126(C), pages 295-314.
    8. Ning Chang & Michael L. Lahr, 2016. "Changes in China’s production-source CO 2 emissions: insights from structural decomposition analysis and linkage analysis," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 224-242, June.
    9. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    10. Lei Liu & Ke Wang & Shanshan Wang & Ruiqin Zhang & Xiaoyan Tang, 2019. "Exploring the Driving Forces and Reduction Potential of Industrial Energy-Related CO 2 Emissions during 2001–2030: A Case Study for Henan Province, China," Sustainability, MDPI, vol. 11(4), pages 1-25, February.
    11. Ye, Bin & Jiang, JingJing & Li, Changsheng & Miao, Lixin & Tang, Jie, 2017. "Quantification and driving force analysis of provincial-level carbon emissions in China," Applied Energy, Elsevier, vol. 198(C), pages 223-238.
    12. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    13. Yue-Jun Zhang & Zhao Liu & Huan Zhang & Tai-De Tan, 2014. "The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 579-595, September.
    14. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2015. "Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 252-260.
    15. Hu, Yucai & Li, Ranran & Du, Lei & Ren, Shenggang & Chevallier, Julien, 2022. "Could SO2 and CO2 emissions trading schemes achieve co-benefits of emissions reduction?," Energy Policy, Elsevier, vol. 170(C).
    16. Khan, Ali Nawaz & En, Xie & Raza, Muhammad Yousaf & Khan, Naseer Abbas & Ali, Ahsan, 2020. "Sectorial study of technological progress and CO2 emission: Insights from a developing economy," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    17. You, Jianmin & Zhang, Wei, 2022. "How heterogeneous technological progress promotes industrial structure upgrading and industrial carbon efficiency? Evidence from China's industries," Energy, Elsevier, vol. 247(C).
    18. Hu, Yucai & Ren, Shenggang & Wang, Yangjie & Chen, Xiaohong, 2020. "Can carbon emission trading scheme achieve energy conservation and emission reduction? Evidence from the industrial sector in China," Energy Economics, Elsevier, vol. 85(C).
    19. Yang Yu & Qiuyue Kong, 2017. "Analysis on the influencing factors of carbon emissions from energy consumption in China based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1691-1707, September.
    20. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:8:p:5549-:d:1125732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.