IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4384-d598018.html
   My bibliography  Save this article

Comparative TCO Analysis of Battery Electric and Hydrogen Fuel Cell Buses for Public Transport System in Small to Midsize Cities

Author

Listed:
  • Hanhee Kim

    (Institute of Energy Systems Technology (INES), Offenburg University of Applied Sciences, Badstrasse 24, 77652 Offenburg, Germany)

  • Niklas Hartmann

    (Institute of Energy Systems Technology (INES), Offenburg University of Applied Sciences, Badstrasse 24, 77652 Offenburg, Germany)

  • Maxime Zeller

    (European Institute for Energy Research (EIFERI), Emmy-Noether-Str. 11, 76131 Karlsruhe, Germany)

  • Renato Luise

    (European Institute for Energy Research (EIFERI), Emmy-Noether-Str. 11, 76131 Karlsruhe, Germany)

  • Tamer Soylu

    (Regionalverband Mittlerer Oberrhein, Haus der Region, Baumeisterstraße 2, 76137 Karlsruhe, Germany)

Abstract

This paper shows the results of an in-depth techno-economic analysis of the public transport sector in a small to midsize city and its surrounding area. Public battery-electric and hydrogen fuel cell buses are comparatively evaluated by means of a total cost of ownership (TCO) model building on historical data and a projection of market prices. Additionally, a structural analysis of the public transport system of a specific city is performed, assessing best fitting bus lines for the use of electric or hydrogen busses, which is supported by a brief acceptance evaluation of the local citizens. The TCO results for electric buses show a strong cost decrease until the year 2030, reaching 23.5% lower TCOs compared to the conventional diesel bus. The optimal electric bus charging system will be the opportunity (pantograph) charging infrastructure. However, the opportunity charging method is applicable under the assumption that several buses share the same station and there is a “hotspot” where as many as possible bus lines converge. In the case of electric buses for the year 2020, the parameter which influenced the most on the TCO was the battery cost, opposite to the year 2030 in where the bus body cost and fuel cost parameters are the ones that dominate the TCO, due to the learning rate of the batteries. For H 2 buses, finding a hotspot is not crucial because they have a similar range to the diesel ones as well as a similar refueling time. H 2 buses until 2030 still have 15.4% higher TCO than the diesel bus system. Considering the benefits of a hypothetical scaling-up effect of hydrogen infrastructures in the region, the hydrogen cost could drop to 5 €/kg. In this case, the overall TCO of the hydrogen solution would drop to a slightly lower TCO than the diesel solution in 2030. Therefore, hydrogen buses can be competitive in small to midsize cities, even with limited routes. For hydrogen buses, the bus body and fuel cost make up a large part of the TCO. Reducing the fuel cost will be an important aspect to reduce the total TCO of the hydrogen bus.

Suggested Citation

  • Hanhee Kim & Niklas Hartmann & Maxime Zeller & Renato Luise & Tamer Soylu, 2021. "Comparative TCO Analysis of Battery Electric and Hydrogen Fuel Cell Buses for Public Transport System in Small to Midsize Cities," Energies, MDPI, vol. 14(14), pages 1-31, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4384-:d:598018
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4384/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4384/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anna Brdulak & Grażyna Chaberek & Jacek Jagodziński, 2020. "Development Forecasts for the Zero-Emission Bus Fleet in Servicing Public Transport in Chosen EU Member Countries," Energies, MDPI, vol. 13(16), pages 1-20, August.
    2. Mohamed, Moataz & Higgins, Christopher D. & Ferguson, Mark & Réquia, Weeberb J., 2018. "The influence of vehicle body type in shaping behavioural intention to acquire electric vehicles: A multi-group structural equation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 54-72.
    3. Offer, G.J. & Howey, D. & Contestabile, M. & Clague, R. & Brandon, N.P., 2010. "Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system," Energy Policy, Elsevier, vol. 38(1), pages 24-29, January.
    4. Orlando Barraza & Miquel Estrada, 2021. "Battery Electric Bus Network: Efficient Design and Cost Comparison of Different Powertrains," Sustainability, MDPI, vol. 13(9), pages 1-28, April.
    5. Lajunen, Antti & Lipman, Timothy, 2016. "Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses," Energy, Elsevier, vol. 106(C), pages 329-342.
    6. Gang Chen & Dawei Hu & Steven Chien & Lei Guo & Mingzheng Liu, 2020. "Optimizing Wireless Charging Locations for Battery Electric Bus Transit with a Genetic Algorithm," Sustainability, MDPI, vol. 12(21), pages 1-20, October.
    7. Klaus Kivekäs & Antti Lajunen & Jari Vepsäläinen & Kari Tammi, 2018. "City Bus Powertrain Comparison: Driving Cycle Variation and Passenger Load Sensitivity Analysis," Energies, MDPI, vol. 11(7), pages 1-26, July.
    8. Jonas Ammenberg & Sofia Dahlgren, 2021. "Sustainability Assessment of Public Transport, Part I—A Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(2), pages 1-25, January.
    9. Yian Yan & Huang Wang & Jiuchun Jiang & Weige Zhang & Yan Bao & Mei Huang, 2019. "Research on Configuration Methods of Battery Energy Storage System for Pure Electric Bus Fast Charging Station," Energies, MDPI, vol. 12(3), pages 1-17, February.
    10. Aleksandar Lozanovski & Nicole Whitehouse & Nathanael Ko & Simon Whitehouse, 2018. "Sustainability Assessment of Fuel Cell Buses in Public Transport," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    11. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    12. Nykvist, Björn & Sprei, Frances & Nilsson, Måns, 2019. "Assessing the progress toward lower priced long range battery electric vehicles," Energy Policy, Elsevier, vol. 124(C), pages 144-155.
    13. Neil Quarles & Kara M. Kockelman & Moataz Mohamed, 2020. "Costs and Benefits of Electrifying and Automating Bus Transit Fleets," Sustainability, MDPI, vol. 12(10), pages 1-15, May.
    14. Andrés E. Díez & Mauricio Restrepo, 2021. "A Planning Method for Partially Grid-Connected Bus Rapid Transit Systems Operating with In-Motion Charging Batteries," Energies, MDPI, vol. 14(9), pages 1-22, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sistig, Hubert Maximilian & Sauer, Dirk Uwe, 2023. "Metaheuristic for the integrated electric vehicle and crew scheduling problem," Applied Energy, Elsevier, vol. 339(C).
    2. Paulo J. G. Ribeiro & José F. G. Mendes, 2022. "Public Transport Decarbonization via Urban Bus Fleet Replacement in Portugal," Energies, MDPI, vol. 15(12), pages 1-16, June.
    3. Kinga Stecuła & Piotr Olczak & Paweł Kamiński & Dominika Matuszewska & Hai Duong Duc, 2022. "Towards Sustainable Transport: Techno-Economic Analysis of Investing in Hydrogen Buses in Public Transport in the Selected City of Poland," Energies, MDPI, vol. 15(24), pages 1-14, December.
    4. Aleksander Jagiełło & Marcin Wołek & Wojciech Bizon, 2023. "Comparison of Tender Criteria for Electric and Diesel Buses in Poland—Has the Ongoing Revolution in Urban Transport Been Overlooked?," Energies, MDPI, vol. 16(11), pages 1-17, May.
    5. Jovan, David Jure & Dolanc, Gregor & Pregelj, Boštjan, 2022. "Utilization of excess water accumulation for green hydrogen production in a run-of-river hydropower plant," Renewable Energy, Elsevier, vol. 195(C), pages 780-794.
    6. Camila Padovan & Júlia A. G. Fagundes & Márcio de Almeida D’Agosto & Ana Carolina M. Angelo & Pedro J. P. Carneiro, 2023. "Impact of Fuel Production Technologies on Energy Consumption and GHG Emissions from Diesel and Electric–Hydrogen Hybrid Buses in Rio de Janeiro, Brazil," Sustainability, MDPI, vol. 15(9), pages 1-13, April.
    7. Iván López & Pedro Luis Calvo & Gonzalo Fernández-Sánchez & Carlos Sierra & Roberto Corchero & Cesar Omar Chacón & Carlos de Juan & Daniel Rosas & Francisco Burgos, 2022. "Different Approaches for a Goal: The Electrical Bus-EMT Madrid as a Successful Case Study," Energies, MDPI, vol. 15(17), pages 1-24, August.
    8. Ali Saadon Al-Ogaili & Ali Q. Al-Shetwi & Thanikanti Sudhakar Babu & Yap Hoon & Majid A. Abdullah & Ameer Alhasan & Ammar Al-Sharaa, 2021. "Electric Buses in Malaysia: Policies, Innovations, Technologies and Life Cycle Evaluations," Sustainability, MDPI, vol. 13(21), pages 1-22, October.
    9. Say, Kelvin & Csereklyei, Zsuzsanna & Brown, Felix Gabriel & Wang, Changlong, 2023. "The economics of public transport electrification: A case study from Victoria, Australia," Energy Economics, Elsevier, vol. 120(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Romero-Ania & Lourdes Rivero Gutiérrez & María Auxiliadora De Vicente Oliva, 2021. "Multiple Criteria Decision Analysis of Sustainable Urban Public Transport Systems," Mathematics, MDPI, vol. 9(16), pages 1-30, August.
    2. Manzolli, Jônatas Augusto & Trovão, João Pedro & Antunes, Carlos Henggeler, 2022. "A review of electric bus vehicles research topics – Methods and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Li, Xiangyi & Castellanos, Sebastian & Maassen, Anne, 2018. "Emerging trends and innovations for electric bus adoption—a comparative case study of contracting and financing of 22 cities in the Americas, Asia-Pacific, and Europe," Research in Transportation Economics, Elsevier, vol. 69(C), pages 470-481.
    4. Zhou, Yu & Ong, Ghim Ping & Meng, Qiang, 2023. "The road to electrification: Bus fleet replacement strategies," Applied Energy, Elsevier, vol. 337(C).
    5. Paulo J. G. Ribeiro & José F. G. Mendes, 2022. "Public Transport Decarbonization via Urban Bus Fleet Replacement in Portugal," Energies, MDPI, vol. 15(12), pages 1-16, June.
    6. Roman Michael Sennefelder & Rubén Martín-Clemente & Ramón González-Carvajal, 2023. "Energy Consumption Prediction of Electric City Buses Using Multiple Linear Regression," Energies, MDPI, vol. 16(11), pages 1-14, May.
    7. Balali, Yasaman & Stegen, Sascha, 2021. "Review of energy storage systems for vehicles based on technology, environmental impacts, and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Correa, G. & Muñoz, P. & Falaguerra, T. & Rodriguez, C.R., 2017. "Performance comparison of conventional, hybrid, hydrogen and electric urban buses using well to wheel analysis," Energy, Elsevier, vol. 141(C), pages 537-549.
    9. García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Tripathi, Shashwat, 2022. "Life cycle CO₂ footprint reduction comparison of hybrid and electric buses for bus transit networks," Applied Energy, Elsevier, vol. 308(C).
    10. Philipp Glücker & Klaus Kivekäs & Jari Vepsäläinen & Panagiotis Mouratidis & Maximilian Schneider & Stephan Rinderknecht & Kari Tammi, 2021. "Prolongation of Battery Lifetime for Electric Buses through Flywheel Integration," Energies, MDPI, vol. 14(4), pages 1-19, February.
    11. Hatem Abdelaty & Moataz Mohamed, 2021. "A Prediction Model for Battery Electric Bus Energy Consumption in Transit," Energies, MDPI, vol. 14(10), pages 1-26, May.
    12. Ajanovic, A. & Glatt, A. & Haas, R., 2021. "Prospects and impediments for hydrogen fuel cell buses," Energy, Elsevier, vol. 235(C).
    13. Barouch Giechaskiel & Simone Casadei & Tommaso Rossi & Fabrizio Forloni & Andrea Di Domenico, 2021. "Measurements of the Emissions of a “Golden” Vehicle at Seven Laboratories with Portable Emission Measurement Systems (PEMS)," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    14. Ali Saadon Al-Ogaili & Ali Q. Al-Shetwi & Hussein M. K. Al-Masri & Thanikanti Sudhakar Babu & Yap Hoon & Khaled Alzaareer & N. V. Phanendra Babu, 2021. "Review of the Estimation Methods of Energy Consumption for Battery Electric Buses," Energies, MDPI, vol. 14(22), pages 1-28, November.
    15. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    16. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    17. Yueqiu Wu & Liping Wang & Yanke Zhang & Jiajie Wu & Qiumei Ma & Lisha Yue, 2021. "Application of Marginal Rate of Transformation in Decision Making of Multi-Objective Reservoir Optimal Operation Scheme," Sustainability, MDPI, vol. 13(3), pages 1-17, February.
    18. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).
    19. Behiri, Walid & Belmokhtar-Berraf, Sana & Chu, Chengbin, 2018. "Urban freight transport using passenger rail network: Scientific issues and quantitative analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 227-245.
    20. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4384-:d:598018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.