IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v216y2025ics1364032125003259.html
   My bibliography  Save this article

Lifecycle assessment and environmental impacts of hybrid electric vehicles fuelled by bioethanol and biogas

Author

Listed:
  • Soares, Laene Oliveira
  • Sodre, Jose Ricardo
  • Mancebo Boloy, Ronney Arismel

Abstract

This work presents an assessment of the environmental impacts of hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs) by integrating cradle-to-grave (C2G) and well-to-wheel (WTW) evaluations. GREET, GASEQ and SimaPro software were applied to assess HEV and PHEV production models available in the UK, Spain, and Brazil, fuelled by 100 % sugarcane bioethanol, blends of gasoline with bioethanol concentrations of 5 % (E5), 10 % (E10), and 27 % (E27), and dual-fuel operation of those fuels with 50 % and 80 % biogas. In comparison with conventional vehicles, the results reveal that PHEVs and HEVs reduce WTW carbon dioxide emissions from 59 to 68 % and 23–54 %, respectively, for all countries and fuels evaluated. The use of PHEVs in Brazil, where renewable sources account for 83 % of the electricity matrix, demonstrated lower overall environmental impacts than their operation in the UK and Spain. The findings conclude that HEVs and PHEVs operating with the biofuels are instrumental to reduce the carbon footprint of the transportation sector as transitionary or complementary technology to battery electric vehicles (BEVs).

Suggested Citation

  • Soares, Laene Oliveira & Sodre, Jose Ricardo & Mancebo Boloy, Ronney Arismel, 2025. "Lifecycle assessment and environmental impacts of hybrid electric vehicles fuelled by bioethanol and biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125003259
    DOI: 10.1016/j.rser.2025.115652
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125003259
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115652?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hoarau, Quentin & Lorang, Etienne, 2022. "An assessment of the European regulation on battery recycling for electric vehicles," Energy Policy, Elsevier, vol. 162(C).
    2. Yanqiao Deng & Minda Ma & Nan Zhou & Zhili Ma & Ran Yan & Xin Ma, 2024. "China's plug-in hybrid electric vehicle transition: an operational carbon perspective," Papers 2405.07308, arXiv.org, revised Aug 2024.
    3. Al-Wreikat, Yazan & Serrano, Clara & Sodré, José Ricardo, 2022. "Effects of ambient temperature and trip characteristics on the energy consumption of an electric vehicle," Energy, Elsevier, vol. 238(PC).
    4. Ahmadi, Pouria & Raeesi, Mehrdad & Changizian, Sina & Teimouri, Aidin & Khoshnevisan, Alireza, 2022. "Lifecycle assessment of diesel, diesel-electric and hydrogen fuel cell transit buses with fuel cell degradation and battery aging using machine learning techniques," Energy, Elsevier, vol. 259(C).
    5. Shafayat Rashid & Emanuele Pagone, 2023. "Cradle-to-Grave Lifecycle Environmental Assessment of Hybrid Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
    6. Fusco Rovai, Fernando & Regina da Cal Seixas, Sônia & Keutenedjian Mady, Carlos Eduardo, 2023. "Regional energy policies for electrifying car fleets," Energy, Elsevier, vol. 278(PA).
    7. García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Tripathi, Shashwat, 2022. "Life cycle CO₂ footprint reduction comparison of hybrid and electric buses for bus transit networks," Applied Energy, Elsevier, vol. 308(C).
    8. Alexander, Scarlett & Abraham, John, 2024. "Making sense of life cycle assessment results of electrified vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    9. Kamilė Petrauskienė & Arvydas Galinis & Daina Kliaugaitė & Jolanta Dvarionienė, 2021. "Comparative Environmental Life Cycle and Cost Assessment of Electric, Hybrid, and Conventional Vehicles in Lithuania," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    10. Offer, G.J. & Contestabile, M. & Howey, D.A. & Clague, R. & Brandon, N.P., 2011. "Techno-economic and behavioural analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system in the UK," Energy Policy, Elsevier, vol. 39(4), pages 1939-1950, April.
    11. Wohlschlager, Daniela & Kigle, Stephan & Schindler, Vanessa & Neitz-Regett, Anika & Fröhling, Magnus, 2024. "Environmental effects of vehicle-to-grid charging in future energy systems – A prospective life cycle assessment," Applied Energy, Elsevier, vol. 370(C).
    12. Offer, G.J. & Howey, D. & Contestabile, M. & Clague, R. & Brandon, N.P., 2010. "Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system," Energy Policy, Elsevier, vol. 38(1), pages 24-29, January.
    13. Lajunen, Antti & Lipman, Timothy, 2016. "Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses," Energy, Elsevier, vol. 106(C), pages 329-342.
    14. Yuan, Hong & Ma, Minda & Zhou, Nan & Xie, Hui & Ma, Zhili & Xiang, Xiwang & Ma, Xin, 2024. "Battery electric vehicle charging in China: Energy demand and emissions trends in the 2020s," Applied Energy, Elsevier, vol. 365(C).
    15. Requia, Weeberb J. & Adams, Matthew D. & Arain, Altaf & Koutrakis, Petros & Ferguson, Mark, 2017. "Carbon dioxide emissions of plug-in hybrid electric vehicles: A life-cycle analysis in eight Canadian cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1390-1396.
    16. Yu Gan & Zifeng Lu & Xin He & Michael Wang & Amer Ahmad Amer, 2023. "Cradle-to-Grave Lifecycle Analysis of Greenhouse Gas Emissions of Light-Duty Passenger Vehicles in China: Towards a Carbon-Neutral Future," Sustainability, MDPI, vol. 15(3), pages 1-14, February.
    17. Velasquez, Carlos E. & M.Chaves, Gustavo & M.Motta, Deborah & Bitencourt G. L. e Estanislau, Fidellis, 2024. "Carbon dioxide life cycle assessment for Brazilian passenger cars fleet towards 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    18. Bradley, Thomas H. & Frank, Andrew A., 2009. "Design, demonstrations and sustainability impact assessments for plug-in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 115-128, January.
    19. Zhou, Yuekuan, 2024. "Lifecycle battery carbon footprint analysis for battery sustainability with energy digitalization and artificial intelligence," Applied Energy, Elsevier, vol. 371(C).
    20. Branco, José Eduardo Holler & da Rocha, Fernando Vinícius & Péra, Thiago Guilherme & de Bastiani, Fernando Pauli & Bartholomeu, Daniela Bacchi & Costa, Everton Lima & Grilo Junior, Isaias, 2024. "Assessing greenhouse gas emissions and costs of Brazilian light-duty vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Togun, Hussein & Basem, Ali & Abdulrazzaq, Tuqa & Biswas, Nirmalendu & Abed, Azher M. & dhabab, Jameel M. & Chattopadhyay, Anirban & Slimi, Khalifa & Paul, Dipankar & Barmavatu, Praveen & Chrouda, Ama, 2025. "Development and comparative analysis between battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV)," Applied Energy, Elsevier, vol. 388(C).
    2. Balali, Yasaman & Stegen, Sascha, 2021. "Review of energy storage systems for vehicles based on technology, environmental impacts, and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Halder, Pobitra & Babaie, Meisam & Salek, Farhad & Shah, Kalpit & Stevanovic, Svetlana & Bodisco, Timothy A. & Zare, Ali, 2024. "Performance, emissions and economic analyses of hydrogen fuel cell vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Roberto Capata, 2018. "Urban and Extra-Urban Hybrid Vehicles: A Technological Review," Energies, MDPI, vol. 11(11), pages 1-38, October.
    5. Li, Xiangyi & Castellanos, Sebastian & Maassen, Anne, 2018. "Emerging trends and innovations for electric bus adoption—a comparative case study of contracting and financing of 22 cities in the Americas, Asia-Pacific, and Europe," Research in Transportation Economics, Elsevier, vol. 69(C), pages 470-481.
    6. Amela Ajanovic & Reinhard Haas, 2020. "On the economics and the future prospects of battery electric vehicles," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(6), pages 1151-1164, December.
    7. Demeulenaere, Xavier, 2019. "The use of automotive fleets to support the diffusion of Alternative Fuel Vehicles: A Rapid Evidence Assessment of barriers and decision mechanisms," Research in Transportation Economics, Elsevier, vol. 76(C).
    8. Minda Ma & Shufan Zhang & Junhong Liu & Ran Yan & Weiguang Cai & Nan Zhou & Jinyue Yan, 2025. "Building floorspace and stock measurement: A review of global efforts, knowledge gaps, and research priorities," Papers 2503.05824, arXiv.org, revised May 2025.
    9. Zhang, Xiufeng & Han, Yizhuo & Jiao, Huiduo & Feng, Yanchao, 2025. "Re-evaluating the effectiveness of regional energy saving targets: Empirical evidence from the Eleventh Five-year Plan in China," Energy, Elsevier, vol. 318(C).
    10. Correa, G. & Muñoz, P. & Falaguerra, T. & Rodriguez, C.R., 2017. "Performance comparison of conventional, hybrid, hydrogen and electric urban buses using well to wheel analysis," Energy, Elsevier, vol. 141(C), pages 537-549.
    11. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    12. Zhang, Qi & Li, Hailong & Zhu, Lijing & Campana, Pietro Elia & Lu, Huihui & Wallin, Fredrik & Sun, Qie, 2018. "Factors influencing the economics of public charging infrastructures for EV – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 500-509.
    13. Sajib Chakraborty & Hai-Nam Vu & Mohammed Mahedi Hasan & Dai-Duong Tran & Mohamed El Baghdadi & Omar Hegazy, 2019. "DC-DC Converter Topologies for Electric Vehicles, Plug-in Hybrid Electric Vehicles and Fast Charging Stations: State of the Art and Future Trends," Energies, MDPI, vol. 12(8), pages 1-43, April.
    14. González Palencia, Juan C. & Furubayashi, Takaaki & Nakata, Toshihiko, 2014. "Techno-economic assessment of lightweight and zero emission vehicles deployment in the passenger car fleet of developing countries," Applied Energy, Elsevier, vol. 123(C), pages 129-142.
    15. Wang, Peng-Tao & Xu, Qing-Chuang & Wang, Fei-Yin & Xu, Mao, 2024. "Investigating the impacts of the Dual Carbon Targets on energy and carbon flows in China," Energy, Elsevier, vol. 313(C).
    16. Gao, Jiayang & Zhang, Tao, 2022. "Effects of public funding on the commercial diffusion of on-site hydrogen production technology: A system dynamics perspective," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    17. Ghimire, Sujan & AL-Musaylh, Mohanad S. & Nguyen-Huy, Thong & Deo, Ravinesh C. & Acharya, Rajendra & Casillas-Pérez, David & Yaseen, Zaher Mundher & Salcedo-Sanz, Sancho, 2025. "Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts," Applied Energy, Elsevier, vol. 378(PA).
    18. Rodrigues, Alyson L.P. & Cipcigan, Liana & Potoglou, Dimitris & Dattero, Dominic & Wells, Peter & Regina da Cal Seixas, Sônia, 2025. "Impacts of subsidy efficiency on bus electrification: A participatory system dynamic modeling," Transport Policy, Elsevier, vol. 167(C), pages 210-221.
    19. Lukas Burs & Ellen Roemer & Stefan Worm & Andrea Masini, 2020. "Are They All Equal? Uncovering Adopter Groups of Battery Electric Vehicles," Sustainability, MDPI, vol. 12(7), pages 1-16, April.
    20. Hanhee Kim & Niklas Hartmann & Maxime Zeller & Renato Luise & Tamer Soylu, 2021. "Comparative TCO Analysis of Battery Electric and Hydrogen Fuel Cell Buses for Public Transport System in Small to Midsize Cities," Energies, MDPI, vol. 14(14), pages 1-31, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125003259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.