IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p8762-d609080.html
   My bibliography  Save this article

Measurements of the Emissions of a “Golden” Vehicle at Seven Laboratories with Portable Emission Measurement Systems (PEMS)

Author

Listed:
  • Barouch Giechaskiel

    (European Commission—Joint Research Centre (JRC), via E. Fermi 2749, 21027 Ispra, Italy)

  • Simone Casadei

    (Innovhub-Stazioni Sperimentali per l’Industria, via G. Galilei 1, 20097 San Donato Milanese, Italy)

  • Tommaso Rossi

    (Innovhub-Stazioni Sperimentali per l’Industria, via G. Galilei 1, 20097 San Donato Milanese, Italy)

  • Fabrizio Forloni

    (European Commission—Joint Research Centre (JRC), via E. Fermi 2749, 21027 Ispra, Italy)

  • Andrea Di Domenico

    (CUNA, Corso Galileo Ferraris 61, 10128 Torino, Italy)

Abstract

In the last years, the in-use emissions of vehicles are measured on the road with portable emissions measurement systems (PEMS). PEMS cannot measure as accurately as the laboratory grade equipment, and studies on their measurement uncertainty have continued since their appearance in the market. In this study we compared PEMS to laboratory grade equipment in Italian laboratories testing a diesel “Golden” (i.e., reference) vehicle for two consecutive years. The results showed equal means of PEMS and laboratory grade equipment for carbon dioxide (CO 2 ), nitrogen oxides (NO x ), and particle number (PN), with a variability of ±5 g/km for CO 2 , ±10 mg/km for NO x , and ±1 × 10 11 p/km for PN, which further decreased in the second year. For carbon monoxide (CO), the PEMS were on average 5–20 mg/km higher than the bags (variability ±40 mg/km). The main conclusion of this study is that PEMS are accurate under controlled laboratory ambient conditions, without any indications of significant bias.

Suggested Citation

  • Barouch Giechaskiel & Simone Casadei & Tommaso Rossi & Fabrizio Forloni & Andrea Di Domenico, 2021. "Measurements of the Emissions of a “Golden” Vehicle at Seven Laboratories with Portable Emission Measurement Systems (PEMS)," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8762-:d:609080
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/8762/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/8762/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pavlovic, J. & Ciuffo, B. & Fontaras, G. & Valverde, V. & Marotta, A., 2018. "How much difference in type-approval CO2 emissions from passenger cars in Europe can be expected from changing to the new test procedure (NEDC vs. WLTP)?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 136-147.
    2. D'Adamo, Idiano & Gastaldi, Massimo & Rosa, Paolo, 2020. "Recycling of end-of-life vehicles: Assessing trends and performances in Europe," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    3. Pavlovic, Jelica & Marotta, Alessandro & Ciuffo, Biagio, 2016. "CO2 emissions and energy demands of vehicles tested under the NEDC and the new WLTP type approval test procedures," Applied Energy, Elsevier, vol. 177(C), pages 661-670.
    4. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    5. Idiano D’Adamo & Paolo Rosa, 2019. "A Structured Literature Review on Obsolete Electric Vehicles Management Practices," Sustainability, MDPI, vol. 11(23), pages 1-17, December.
    6. Xinglong Liu & Fuquan Zhao & Han Hao & Kangda Chen & Zongwei Liu & Hassan Babiker & Amer Ahmad Amer, 2020. "From NEDC to WLTP: Effect on the Energy Consumption, NEV Credits, and Subsidies Policies of PHEV in the Chinese Market," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    7. Manel Arribas-Ibar & Petra A. Nylund & Alexander Brem, 2021. "The Risk of Dissolution of Sustainable Innovation Ecosystems in Times of Crisis: The Electric Vehicle during the COVID-19 Pandemic," Sustainability, MDPI, vol. 13(3), pages 1-14, January.
    8. Belachew Tesfa & Fengshou Gu & Rakesh Mishra & Andrew Ball, 2014. "Emission Characteristics of a CI Engine Running with a Range of Biodiesel Feedstocks," Energies, MDPI, vol. 7(1), pages 1-17, January.
    9. Otto Andersen & Paul Upham & Carlo Aall, 2018. "Technological Response Options after the VW Diesel Scandal: Implications for Engine CO 2 Emissions," Sustainability, MDPI, vol. 10(7), pages 1-18, July.
    10. Zvonimira Sverko Grdic & Marinela Krstinic Nizic & Elena Rudan, 2020. "Circular Economy Concept in the Context of Economic Development in EU Countries," Sustainability, MDPI, vol. 12(7), pages 1-13, April.
    11. Solange Ayuni Numfor & Geoffrey Barongo Omosa & Zhengyang Zhang & Kazuyo Matsubae, 2021. "A Review of Challenges and Opportunities for End-of-Life Vehicle Recycling in Developing Countries and Emerging Economies: A SWOT Analysis," Sustainability, MDPI, vol. 13(9), pages 1-24, April.
    12. Jonas Ammenberg & Sofia Dahlgren, 2021. "Sustainability Assessment of Public Transport, Part I—A Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(2), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maksymilian Mądziel, 2023. "Vehicle Emission Models and Traffic Simulators: A Review," Energies, MDPI, vol. 16(9), pages 1-31, May.
    2. Barouch Giechaskiel & Tobias Jakobsson & Hua Lu Karlsson & M. Yusuf Khan & Linus Kronlund & Yoshinori Otsuki & Jürgen Bredenbeck & Stefan Handler-Matejka, 2022. "Assessment of On-Board and Laboratory Gas Measurement Systems for Future Heavy-Duty Emissions Regulations," IJERPH, MDPI, vol. 19(10), pages 1-16, May.
    3. Barouch Giechaskiel & Fabrizio Forloni & Massimo Carriero & Gianmarco Baldini & Paolo Castellano & Robin Vermeulen & Dimitrios Kontses & Pavlos Fragkiadoulakis & Zissis Samaras & Georgios Fontaras, 2022. "Effect of Tampering on On-Road and Off-Road Diesel Vehicle Emissions," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    4. Christian Engström & Per Öberg & Georgios Fontaras & Barouch Giechaskiel, 2022. "Considerations for Achieving Equivalence between Hub- and Roller-Type Dynamometers for Vehicle Exhaust Emissions," Energies, MDPI, vol. 15(20), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kangda Chen & Fuquan Zhao & Xinglong Liu & Han Hao & Zongwei Liu, 2021. "Impacts of the New Worldwide Light-Duty Test Procedure on Technology Effectiveness and China’s Passenger Vehicle Fuel Consumption Regulations," IJERPH, MDPI, vol. 18(6), pages 1-20, March.
    2. Xinglong Liu & Fuquan Zhao & Han Hao & Kangda Chen & Zongwei Liu & Hassan Babiker & Amer Ahmad Amer, 2020. "From NEDC to WLTP: Effect on the Energy Consumption, NEV Credits, and Subsidies Policies of PHEV in the Chinese Market," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    3. Idiano D’Adamo & Massimo Gastaldi & Jacopo Piccioni & Paolo Rosa, 2023. "The Role of Automotive Flexibility in Supporting the Diffusion of Sustainable Mobility Initiatives: A Stakeholder Attitudes Assessment," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(3), pages 459-481, September.
    4. Stefan Tabacu & Dragos Popa, 2023. "Backward-Facing Analysis for the Preliminary Estimation of the Vehicle Fuel Consumption," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    5. Dolatabadi, N. & Forder, M. & Morris, N. & Rahmani, R. & Rahnejat, H. & Howell-Smith, S., 2020. "Influence of advanced cylinder coatings on vehicular fuel economy and emissions in piston compression ring conjunction," Applied Energy, Elsevier, vol. 259(C).
    6. Karol Tucki & Olga Orynycz & Andrzej Wasiak & Antoni Świć & Remigiusz Mruk & Katarzyna Botwińska, 2020. "Estimation of Carbon Dioxide Emissions from a Diesel Engine Powered by Lignocellulose Derived Fuel for Better Management of Fuel Production," Energies, MDPI, vol. 13(3), pages 1-29, January.
    7. Timothy Bodisco & Ali Zare, 2019. "Practicalities and Driving Dynamics of a Real Driving Emissions (RDE) Euro 6 Regulation Homologation Test," Energies, MDPI, vol. 12(12), pages 1-19, June.
    8. Simona Andreea Apostu & Iza Gigauri & Mirela Panait & Pedro A. Martín-Cervantes, 2023. "Is Europe on the Way to Sustainable Development? Compatibility of Green Environment, Economic Growth, and Circular Economy Issues," IJERPH, MDPI, vol. 20(2), pages 1-17, January.
    9. Alberto Romero-Ania & Lourdes Rivero Gutiérrez & María Auxiliadora De Vicente Oliva, 2021. "Multiple Criteria Decision Analysis of Sustainable Urban Public Transport Systems," Mathematics, MDPI, vol. 9(16), pages 1-30, August.
    10. Fan, Pengfei & Yin, Hang & Lu, Hongyu & Wu, Yizheng & Zhai, Zhiqiang & Yu, Lei & Song, Guohua, 2023. "Which factor contributes more to the fuel consumption gap between in-laboratory vs. real-world driving conditions? An independent component analysis," Energy Policy, Elsevier, vol. 182(C).
    11. Karol Tucki & Andrzej Wasiak & Olga Orynycz & Remigiusz Mruk, 2020. "Computer Simulation as a Tool for Managing the Technical Development of Methods for Diagnosing the Technical Condition of a Vehicle," Energies, MDPI, vol. 13(11), pages 1-24, June.
    12. Giulia Caruso & Emiliano Colantonio & Stefano Antonio Gattone, 2020. "Relationships between Renewable Energy Consumption, Social Factors, and Health: A Panel Vector Auto Regression Analysis of a Cluster of 12 EU Countries," Sustainability, MDPI, vol. 12(7), pages 1-16, April.
    13. Yuan Qiao & Yizhou Song & Kaisheng Huang, 2019. "A Novel Control Algorithm Design for Hybrid Electric Vehicles Considering Energy Consumption and Emission Performance," Energies, MDPI, vol. 12(14), pages 1-28, July.
    14. Hyeonjik Lee & Kihyung Lee, 2020. "Comparative Evaluation of the Effect of Vehicle Parameters on Fuel Consumption under NEDC and WLTP," Energies, MDPI, vol. 13(16), pages 1-19, August.
    15. Artur Jaworski & Hubert Kuszewski & Krzysztof Lew & Paweł Wojewoda & Krzysztof Balawender & Paweł Woś & Rafał Longwic & Sergii Boichenko, 2023. "Assessment of the Effect of Road Load on Energy Consumption and Exhaust Emissions of a Hybrid Vehicle in an Urban Road Driving Cycle—Comparison of Road and Chassis Dynamometer Tests," Energies, MDPI, vol. 16(15), pages 1-20, July.
    16. Hanhee Kim & Niklas Hartmann & Maxime Zeller & Renato Luise & Tamer Soylu, 2021. "Comparative TCO Analysis of Battery Electric and Hydrogen Fuel Cell Buses for Public Transport System in Small to Midsize Cities," Energies, MDPI, vol. 14(14), pages 1-31, July.
    17. Arminda Almeida & Nuno Sousa & João Coutinho-Rodrigues, 2019. "Quest for Sustainability: Life-Cycle Emissions Assessment of Electric Vehicles Considering Newer Li-Ion Batteries," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    18. Karol Tucki & Remigiusz Mruk & Olga Orynycz & Katarzyna Botwińska & Arkadiusz Gola & Anna Bączyk, 2019. "Toxicity of Exhaust Fumes (CO, NO x ) of the Compression-Ignition (Diesel) Engine with the Use of Simulation," Sustainability, MDPI, vol. 11(8), pages 1-15, April.
    19. Lepore, Dominique & Frontoni, Emanuele & Micozzi, Alessandra & Moccia, Sara & Romeo, Luca & Spigarelli, Francesca, 2023. "Uncovering the potential of innovation ecosystems in the healthcare sector after the COVID-19 crisis," Health Policy, Elsevier, vol. 127(C), pages 80-86.
    20. Idiano D'Adamo & Massimo Gastaldi & Ilhan Ozturk, 2023. "The sustainable development of mobility in the green transition: Renewable energy, local industrial chain, and battery recycling," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 840-852, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8762-:d:609080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.