IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i14p2698-d248447.html
   My bibliography  Save this article

A Novel Control Algorithm Design for Hybrid Electric Vehicles Considering Energy Consumption and Emission Performance

Author

Listed:
  • Yuan Qiao

    (State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China)

  • Yizhou Song

    (State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
    The Joint Laboratory for Internet of Vehicles, Ministry of Education - China Mobile Communications Corporation, Beijing 100084, China)

  • Kaisheng Huang

    (State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
    The Joint Laboratory for Internet of Vehicles, Ministry of Education - China Mobile Communications Corporation, Beijing 100084, China
    Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China)

Abstract

Under the severe challenge of increasingly stringent emission regulations and constantly improving fuel economy requirements, hybrid electric vehicles (HEVs) have attracted widespread attention in the auto industry as a practicable technical route of green vehicles. To address the considerations on energy consumption and emission performance simultaneously, a novel control algorithm design is proposed for the energy management system (EMS) of HEVs. First, energy consumption of the investigated P3 HEV powertrain is determined based on bench test data. Second, crucial performance indicators of NOx and particle emissions, prior to a catalytic converter, are also measured and processed as a prerequisite. A comprehensive objective function is established on the grounds of the Equivalent Consumption Minimization Strategy (ECMS) and corresponding simulation models are constructed in MATLAB/SIMULINK. Subsequently, the control algorithm is validated against the simulation results predicated on the Worldwide-Harmonized Light-Vehicle Test Procedure (WLTP).Integrated research contents include: (1) The searching process aimed at the optimal solution of the pre-established multi-parameter objective function is thoroughly investigated; (2) the impacts of weighting coefficients pertaining to two exhaust pollutants upon the specific configurations of the proposed control algorithm are discussed in detail; and (3) the comparison analysis of the simulation results obtained from ECMS and classical Dynamic Programming (DP), respectively, is performed.

Suggested Citation

  • Yuan Qiao & Yizhou Song & Kaisheng Huang, 2019. "A Novel Control Algorithm Design for Hybrid Electric Vehicles Considering Energy Consumption and Emission Performance," Energies, MDPI, vol. 12(14), pages 1-28, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2698-:d:248447
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/14/2698/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/14/2698/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mera, Zamir & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2019. "Analysis of the high instantaneous NOx emissions from Euro 6 diesel passenger cars under real driving conditions," Applied Energy, Elsevier, vol. 242(C), pages 1074-1089.
    2. Taylor, Alex M.K.P., 2008. "Science review of internal combustion engines," Energy Policy, Elsevier, vol. 36(12), pages 4657-4667, December.
    3. Yuan Qiao & Kaisheng Huang & Johannes Jeub & Jianan Qian & Yizhou Song, 2018. "Deploying Electric Vehicle Charging Stations Considering Time Cost and Existing Infrastructure," Energies, MDPI, vol. 11(9), pages 1-13, September.
    4. Demuynck, Joachim & Bosteels, Dirk & De Paepe, Michel & Favre, Cécile & May, John & Verhelst, Sebastian, 2012. "Recommendations for the new WLTP cycle based on an analysis of vehicle emission measurements on NEDC and CADC," Energy Policy, Elsevier, vol. 49(C), pages 234-242.
    5. Enang, Wisdom & Bannister, Chris, 2017. "Modelling and control of hybrid electric vehicles (A comprehensive review)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1210-1239.
    6. Yuan Qiao & Xucheng Duan & Kaisheng Huang & Yizhou Song & Jianan Qian, 2018. "Scavenging Ports’ Optimal Design of a Two-Stroke Small Aeroengine Based on the Benson/Bradham Model," Energies, MDPI, vol. 11(10), pages 1-26, October.
    7. Shabbir, Wassif & Evangelou, Simos A., 2014. "Real-time control strategy to maximize hybrid electric vehicle powertrain efficiency," Applied Energy, Elsevier, vol. 135(C), pages 512-522.
    8. Zhang, Pei & Yan, Fuwu & Du, Changqing, 2015. "A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 88-104.
    9. Pavlovic, J. & Ciuffo, B. & Fontaras, G. & Valverde, V. & Marotta, A., 2018. "How much difference in type-approval CO2 emissions from passenger cars in Europe can be expected from changing to the new test procedure (NEDC vs. WLTP)?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 136-147.
    10. Kerry Krutilla & John D. Graham, 2012. "Are Green Vehicles Worth the Extra Cost? The Case of Diesel‐Electric Hybrid Technology for Urban Delivery Vehicles," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 31(3), pages 501-532, June.
    11. Pavlovic, Jelica & Marotta, Alessandro & Ciuffo, Biagio, 2016. "CO2 emissions and energy demands of vehicles tested under the NEDC and the new WLTP type approval test procedures," Applied Energy, Elsevier, vol. 177(C), pages 661-670.
    12. Yi, Chenyu & Epureanu, Bogdan I. & Hong, Sung-Kwon & Ge, Tony & Yang, Xiao Guang, 2016. "Modeling, control, and performance of a novel architecture of hybrid electric powertrain system," Applied Energy, Elsevier, vol. 178(C), pages 454-467.
    13. Xiang, Changle & Ding, Feng & Wang, Weida & He, Wei, 2017. "Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control," Applied Energy, Elsevier, vol. 189(C), pages 640-653.
    14. Tie, Siang Fui & Tan, Chee Wei, 2013. "A review of energy sources and energy management system in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 82-102.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yaxin & Lou, Diming & Xu, Ning & Fang, Liang & Tan, Piqiang, 2021. "Energy management and emission control for range extended electric vehicles," Energy, Elsevier, vol. 236(C).
    2. Pier Giuseppe Anselma, 2021. "Optimization-Driven Powertrain-Oriented Adaptive Cruise Control to Improve Energy Saving and Passenger Comfort," Energies, MDPI, vol. 14(10), pages 1-28, May.
    3. Qicheng Xue & Xin Zhang & Teng Teng & Jibao Zhang & Zhiyuan Feng & Qinyang Lv, 2020. "A Comprehensive Review on Classification, Energy Management Strategy, and Control Algorithm for Hybrid Electric Vehicles," Energies, MDPI, vol. 13(20), pages 1-30, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karol Tucki & Andrzej Wasiak & Olga Orynycz & Remigiusz Mruk, 2020. "Computer Simulation as a Tool for Managing the Technical Development of Methods for Diagnosing the Technical Condition of a Vehicle," Energies, MDPI, vol. 13(11), pages 1-24, June.
    2. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Xinglong Liu & Fuquan Zhao & Han Hao & Kangda Chen & Zongwei Liu & Hassan Babiker & Amer Ahmad Amer, 2020. "From NEDC to WLTP: Effect on the Energy Consumption, NEV Credits, and Subsidies Policies of PHEV in the Chinese Market," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    4. Chen, Z. & Liu, Y. & Ye, M. & Zhang, Y. & Chen, Z. & Li, G., 2021. "A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Stefan Tabacu & Dragos Popa, 2023. "Backward-Facing Analysis for the Preliminary Estimation of the Vehicle Fuel Consumption," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    6. Dolatabadi, N. & Forder, M. & Morris, N. & Rahmani, R. & Rahnejat, H. & Howell-Smith, S., 2020. "Influence of advanced cylinder coatings on vehicular fuel economy and emissions in piston compression ring conjunction," Applied Energy, Elsevier, vol. 259(C).
    7. Qicheng Xue & Xin Zhang & Teng Teng & Jibao Zhang & Zhiyuan Feng & Qinyang Lv, 2020. "A Comprehensive Review on Classification, Energy Management Strategy, and Control Algorithm for Hybrid Electric Vehicles," Energies, MDPI, vol. 13(20), pages 1-30, October.
    8. Babu, Ajay & Ashok, S., 2015. "Improved parallel mild hybrids for urban roads," Applied Energy, Elsevier, vol. 144(C), pages 276-283.
    9. Lin, Xinyou & Wu, Jiayun & Wei, Yimin, 2021. "An ensemble learning velocity prediction-based energy management strategy for a plug-in hybrid electric vehicle considering driving pattern adaptive reference SOC," Energy, Elsevier, vol. 234(C).
    10. Fan, Pengfei & Yin, Hang & Lu, Hongyu & Wu, Yizheng & Zhai, Zhiqiang & Yu, Lei & Song, Guohua, 2023. "Which factor contributes more to the fuel consumption gap between in-laboratory vs. real-world driving conditions? An independent component analysis," Energy Policy, Elsevier, vol. 182(C).
    11. Yan Wang & Qing Gao & Tianshi Zhang & Guohua Wang & Zhipeng Jiang & Yunxia Li, 2017. "Advances in Integrated Vehicle Thermal Management and Numerical Simulation," Energies, MDPI, vol. 10(10), pages 1-30, October.
    12. Balali, Yasaman & Stegen, Sascha, 2021. "Review of energy storage systems for vehicles based on technology, environmental impacts, and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Hyeonjik Lee & Kihyung Lee, 2020. "Comparative Evaluation of the Effect of Vehicle Parameters on Fuel Consumption under NEDC and WLTP," Energies, MDPI, vol. 13(16), pages 1-19, August.
    14. Mustafa Hamurcu & Tamer Eren, 2020. "Electric Bus Selection with Multicriteria Decision Analysis for Green Transportation," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    15. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    16. Agarwal, Avinash Kumar & Mustafi, Nirendra Nath, 2021. "Real-world automotive emissions: Monitoring methodologies, and control measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    17. Arminda Almeida & Nuno Sousa & João Coutinho-Rodrigues, 2019. "Quest for Sustainability: Life-Cycle Emissions Assessment of Electric Vehicles Considering Newer Li-Ion Batteries," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    18. Sara Luciani & Andrea Tonoli, 2022. "Control Strategy Assessment for Improving PEM Fuel Cell System Efficiency in Fuel Cell Hybrid Vehicles," Energies, MDPI, vol. 15(6), pages 1-17, March.
    19. Sulaiman, N. & Hannan, M.A. & Mohamed, A. & Ker, P.J. & Majlan, E.H. & Wan Daud, W.R., 2018. "Optimization of energy management system for fuel-cell hybrid electric vehicles: Issues and recommendations," Applied Energy, Elsevier, vol. 228(C), pages 2061-2079.
    20. Huang, Yanjun & Wang, Hong & Khajepour, Amir & Li, Bin & Ji, Jie & Zhao, Kegang & Hu, Chuan, 2018. "A review of power management strategies and component sizing methods for hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 132-144.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2698-:d:248447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.