IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2897-d556438.html
   My bibliography  Save this article

Optimization-Driven Powertrain-Oriented Adaptive Cruise Control to Improve Energy Saving and Passenger Comfort

Author

Listed:
  • Pier Giuseppe Anselma

    (Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, 10129 Torino, Italy
    Center for Automotive Research and Sustainable Mobility (CARS), Politecnico di Torino, 10129 Torino, Italy)

Abstract

Assessing the potential of advanced driver assistance systems requires developing dedicated control algorithms for controlling the longitudinal speed of automated vehicles over time. In this paper, a multiobjective off-line optimal control approach for planning the speed of the following vehicle in adaptive cruise control (ACC) driving is proposed. The implemented method relies on the principle of global optimality fostered by dynamic programming (DP) and aims to minimize propelling energy consumption and enhance passenger comfort. The powertrain model and onboard control system are integrated within the proposed car-following optimization framework. The retained ACC approach ensures that the distance between the following vehicle and the preceding vehicle is always maintained within allowed limits. The flexibility of the proposed method is demonstrated here through ease of implementation on a wide range of powertrain categories, including a conventional vehicle propelled by an internal combustion engine solely, a pure electric vehicle, a parallel P2 hybrid electric vehicle (HEV) and a power-split HEV. Moreover, different driving conditions are considered to prove the effectiveness of the proposed optimization-driven ACC approach. Obtained simulation results suggest that up to 22% energy-saving and 48% passenger comfort improvement might be achieved for the ACC-enabled vehicle compared with the preceding vehicle by implementing the proposed optimization-driven ACC approach. Engineers may adopt the proposed workflow to evaluate corresponding real-time ACC approaches and assess optimal powertrain design solutions for ACC driving.

Suggested Citation

  • Pier Giuseppe Anselma, 2021. "Optimization-Driven Powertrain-Oriented Adaptive Cruise Control to Improve Energy Saving and Passenger Comfort," Energies, MDPI, vol. 14(10), pages 1-28, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2897-:d:556438
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2897/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2897/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luu Ngoc An & Tran Quoc Tuan, 2018. "Dynamic Programming for Optimal Energy Management of Hybrid Wind–PV–Diesel–Battery," Energies, MDPI, vol. 11(11), pages 1-16, November.
    2. Jure Soldo & Branimir Škugor & Joško Deur, 2019. "Synthesis of Optimal Battery State-of-Charge Trajectory for Blended Regime of Plug-in Hybrid Electric Vehicles in the Presence of Low-Emission Zones and Varying Road Grades," Energies, MDPI, vol. 12(22), pages 1-21, November.
    3. Calin Iclodean & Nicolae Cordos & Bogdan Ovidiu Varga, 2020. "Autonomous Shuttle Bus for Public Transportation: A Review," Energies, MDPI, vol. 13(11), pages 1-45, June.
    4. Shima Nazari & Jason Siegel & Robert Middleton & Anna Stefanopoulou, 2020. "Power Split Supercharging: A Mild Hybrid Approach to Boost Fuel Economy," Energies, MDPI, vol. 13(24), pages 1-17, December.
    5. Zhiqiang Jiang & Yaqi Qiao & Yuyun Chen & Changming Ji, 2018. "A New Reservoir Operation Chart Drawing Method Based on Dynamic Programming," Energies, MDPI, vol. 11(12), pages 1-17, November.
    6. Pengwei Wang & Song Gao & Liang Li & Binbin Sun & Shuo Cheng, 2019. "Obstacle Avoidance Path Planning Design for Autonomous Driving Vehicles Based on an Improved Artificial Potential Field Algorithm," Energies, MDPI, vol. 12(12), pages 1-14, June.
    7. Hazel Si Min Lim & Araz Taeihagh, 2018. "Autonomous Vehicles for Smart and Sustainable Cities: An In-Depth Exploration of Privacy and Cybersecurity Implications," Energies, MDPI, vol. 11(5), pages 1-23, April.
    8. Alexander Koch & Olaf Teichert & Svenja Kalt & Aybike Ongel & Markus Lienkamp, 2020. "Powertrain Optimization for Electric Buses under Optimal Energy-Efficient Driving," Energies, MDPI, vol. 13(23), pages 1-19, December.
    9. Yuan Qiao & Yizhou Song & Kaisheng Huang, 2019. "A Novel Control Algorithm Design for Hybrid Electric Vehicles Considering Energy Consumption and Emission Performance," Energies, MDPI, vol. 12(14), pages 1-28, July.
    10. Anselma, Pier Giuseppe & Biswas, Atriya & Belingardi, Giovanni & Emadi, Ali, 2020. "Rapid assessment of the fuel economy capability of parallel and series-parallel hybrid electric vehicles," Applied Energy, Elsevier, vol. 275(C).
    11. Chaofeng Pan & Yanyan Liang & Long Chen & Liao Chen, 2019. "Optimal Control for Hybrid Energy Storage Electric Vehicle to Achieve Energy Saving Using Dynamic Programming Approach," Energies, MDPI, vol. 12(4), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francis F. Assadian, 2022. "Advanced Control and Estimation Concepts and New Hardware Topologies for Future Mobility," Energies, MDPI, vol. 15(4), pages 1-3, February.
    2. Sara Luciani & Andrea Tonoli, 2022. "Control Strategy Assessment for Improving PEM Fuel Cell System Efficiency in Fuel Cell Hybrid Vehicles," Energies, MDPI, vol. 15(6), pages 1-17, March.
    3. Pier Giuseppe Anselma, 2022. "Dynamic Programming Based Rapid Energy Management of Hybrid Electric Vehicles with Constraints on Smooth Driving, Battery State-of-Charge and Battery State-of-Health," Energies, MDPI, vol. 15(5), pages 1-25, February.
    4. Antonio Capuano & Matteo Spano & Alessia Musa & Gianluca Toscano & Daniela Anna Misul, 2021. "Development of an Adaptive Model Predictive Control for Platooning Safety in Battery Electric Vehicles," Energies, MDPI, vol. 14(17), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zehua Li & Jiaran Niu & Zhenzhou Li & Yukun Chen & Yang Wang & Bin Jiang, 2022. "The Impact of Individual Differences on the Acceptance of Self-Driving Buses: A Case Study of Nanjing, China," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    2. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    3. Liliana Andrei & Oana Luca & Florian Gaman, 2022. "Insights from User Preferences on Automated Vehicles: Influence of Socio-Demographic Factors on Value of Time in Romania Case," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    4. Sara Abdallaoui & El-Hassane Aglzim & Ahmed Chaibet & Ali Kribèche, 2022. "Thorough Review Analysis of Safe Control of Autonomous Vehicles: Path Planning and Navigation Techniques," Energies, MDPI, vol. 15(4), pages 1-19, February.
    5. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    6. Kum Fai Yuen & Ling Qian Choo & Xue Li & Yiik Diew Wong & Fei Ma & Xueqin Wang, 2023. "A theoretical investigation of user acceptance of autonomous public transport," Transportation, Springer, vol. 50(2), pages 545-569, April.
    7. Yi Liu & Zhiqiang Jiang & Zhongkai Feng & Yuyun Chen & Hairong Zhang & Ping Chen, 2019. "Optimization of Energy Storage Operation Chart of Cascade Reservoirs with Multi-Year Regulating Reservoir," Energies, MDPI, vol. 12(20), pages 1-20, October.
    8. Foroughi, Behzad & Nhan, Pham Viet & Iranmanesh, Mohammad & Ghobakhloo, Morteza & Nilashi, Mehrbakhsh & Yadegaridehkordi, Elaheh, 2023. "Determinants of intention to use autonomous vehicles: Findings from PLS-SEM and ANFIS," Journal of Retailing and Consumer Services, Elsevier, vol. 70(C).
    9. Alexander N. Kozlov & Nikita V. Tomin & Denis N. Sidorov & Electo E. S. Lora & Victor G. Kurbatsky, 2020. "Optimal Operation Control of PV-Biomass Gasifier-Diesel-Hybrid Systems Using Reinforcement Learning Techniques," Energies, MDPI, vol. 13(10), pages 1-20, May.
    10. Jakov Topić & Jure Soldo & Filip Maletić & Branimir Škugor & Joško Deur, 2020. "Virtual Simulation of Electric Bus Fleets for City Bus Transport Electrification Planning," Energies, MDPI, vol. 13(13), pages 1-24, July.
    11. Tania Leiman, 2021. "Law and tech collide: foreseeability, reasonableness and advanced driver assistance systems [Advanced Driver Assistance Systems (ADAS): A consideration of driver perceptions on training, usage & im," Policy and Society, Darryl S. Jarvis and M. Ramesh, vol. 40(2), pages 250-271.
    12. Macdonald Nko & S.P. Daniel Chowdhury & Olawale Popoola, 2019. "Application Assessment of Pumped Storage and Lithium-Ion Batteries on Electricity Supply Grid," Energies, MDPI, vol. 12(15), pages 1-36, July.
    13. Francis F. Assadian, 2022. "Advanced Control and Estimation Concepts and New Hardware Topologies for Future Mobility," Energies, MDPI, vol. 15(4), pages 1-3, February.
    14. Hazel Si Min Lim & Araz Taeihagh, 2019. "Algorithmic Decision-Making in AVs: Understanding Ethical and Technical Concerns for Smart Cities," Sustainability, MDPI, vol. 11(20), pages 1-28, October.
    15. Yang Gao & Changhong Liu & Yuan Liang & Sadegh Kouhestani Hamed & Fuwei Wang & Bo Bi, 2022. "Minimizing Energy Consumption and Powertrain Cost of Fuel Cell Hybrid Vehicles with Consideration of Different Driving Cycles and SOC Ranges," Energies, MDPI, vol. 15(17), pages 1-12, August.
    16. Danijel Pavković & Mihael Cipek & Filip Plavac & Juraj Karlušić & Matija Krznar, 2022. "Internal Combustion Engine Starting and Torque Boosting Control System Design with Vibration Active Damping Features for a P0 Mild Hybrid Vehicle Configuration," Energies, MDPI, vol. 15(4), pages 1-24, February.
    17. Yan, Yingying & Zhong, Shiquan & Tian, Junfang & Li, Tong, 2022. "Continuance intention of autonomous buses: An empirical analysis based on passenger experience," Transport Policy, Elsevier, vol. 126(C), pages 85-95.
    18. Józef Drewniak & Tomasz Kądziołka & Jacek Rysiński & Konrad Stańco, 2023. "Power Flow in Coupled Three-Row Series-Parallel Planetary Gear System, Part I: Without Power Losses," Energies, MDPI, vol. 16(21), pages 1-37, October.
    19. Chen, Shuang & Hu, Minghui & Guo, Shanqi, 2023. "Fast dynamic-programming algorithm for solving global optimization problems of hybrid electric vehicles," Energy, Elsevier, vol. 273(C).
    20. Aleš Hace, 2019. "The Advanced Control Approach based on SMC Design for the High-Fidelity Haptic Power Lever of a Small Hybrid Electric Aircraft," Energies, MDPI, vol. 12(15), pages 1-31, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2897-:d:556438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.