IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2869-d367477.html
   My bibliography  Save this article

Computer Simulation as a Tool for Managing the Technical Development of Methods for Diagnosing the Technical Condition of a Vehicle

Author

Listed:
  • Karol Tucki

    () (Department of Production Engineering, Institute of Mechanical Engineering, Warsaw University of Life Sciences, Nowoursynowska Street 164, 02-787 Warsaw, Poland)

  • Andrzej Wasiak

    () (Department of Production Management, Bialystok University of Technology, Wiejska Street 45A, 15-351 Bialystok, Poland)

  • Olga Orynycz

    () (Department of Production Management, Bialystok University of Technology, Wiejska Street 45A, 15-351 Bialystok, Poland)

  • Remigiusz Mruk

    () (Department of Production Engineering, Institute of Mechanical Engineering, Warsaw University of Life Sciences, Nowoursynowska Street 164, 02-787 Warsaw, Poland)

Abstract

Introduced by the Civil Code, the rules of road safety are introducing continuously increasingly strict requirements on motor vehicles. These requirements relate to various aspects of the technical condition of vehicles, both those that determine traffic safety and those that affect the vehicle’s environmental impact. The law requires regular diagnosis of the technical condition of vehicles in service. Diagnostic tests conducted in the form of road tests or the tests performed in workshop conditions allow to determine the symptoms of dysfunctions of the tested vehicle, not always clearly defining the causes and location of damage. The purpose of the work is the design the simulation of a station for of vehicle dynamics tests up to 3.5 t using simulation programs OpenModelica and SciLab. A simulation of the work of the stand for testing the dynamics of vehicles in the form of a chassis dynamometer was achieved. The program enables the simulation of tests: NEDC (New European Drive Cycle), WLTP (Worldwide Harmonized Light Vehicle Test Procedure), CADCM150 (joint Artemis driving cycle—Motorway at vMax = 150 kph), CADCU (Common Artemis Driving Cycle—Urban), FTP75 EPA (Federal Test Procedure, Environmental Protection Agency). The simulator (for any assumed type of vehicle) can be used in two modes: 1. Introduction of the presumed cause—Generates the expected results in the functioning of the vehicle. This function can be used to create a cause–effect relational database. 2. Analysis of data from the actual diagnostic system suggesting the causes of the observed (measured) errors in the functioning of the system. The simulator can be used both to design and implement the technological development of intelligent diagnostic systems, and to support the creation of application software for a workshop diagnostic system. Introducing the simulator into practice will also enable the improvement of road safety management.

Suggested Citation

  • Karol Tucki & Andrzej Wasiak & Olga Orynycz & Remigiusz Mruk, 2020. "Computer Simulation as a Tool for Managing the Technical Development of Methods for Diagnosing the Technical Condition of a Vehicle," Energies, MDPI, Open Access Journal, vol. 13(11), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2869-:d:367477
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2869/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2869/
    Download Restriction: no

    References listed on IDEAS

    as
    1. Hooftman, Nils & Messagie, Maarten & Van Mierlo, Joeri & Coosemans, Thierry, 2018. "A review of the European passenger car regulations – Real driving emissions vs local air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 1-21.
    2. Karol Tucki & Olga Orynycz & Andrzej Wasiak & Antoni Świć & Remigiusz Mruk & Katarzyna Botwińska, 2020. "Estimation of Carbon Dioxide Emissions from a Diesel Engine Powered by Lignocellulose Derived Fuel for Better Management of Fuel Production," Energies, MDPI, Open Access Journal, vol. 13(3), pages 1-29, January.
    3. Roso, Vinícius Rückert & Santos, Nathália Duarte Souza Alvarenga & Valle, Ramon Molina & Alvarez, Carlos Eduardo Castilla & Monsalve-Serrano, Javier & García, Antonio, 2019. "Evaluation of a stratified prechamber ignition concept for vehicular applications in real world and standardized driving cycles," Applied Energy, Elsevier, vol. 254(C).
    4. Demuynck, Joachim & Bosteels, Dirk & De Paepe, Michel & Favre, Cécile & May, John & Verhelst, Sebastian, 2012. "Recommendations for the new WLTP cycle based on an analysis of vehicle emission measurements on NEDC and CADC," Energy Policy, Elsevier, vol. 49(C), pages 234-242.
    5. José I. Huertas & Michael Giraldo & Luis F. Quirama & Jenny Díaz, 2018. "Driving Cycles Based on Fuel Consumption," Energies, MDPI, Open Access Journal, vol. 11(11), pages 1-13, November.
    6. Karol Tucki & Remigiusz Mruk & Olga Orynycz & Andrzej Wasiak & Katarzyna Botwińska & Arkadiusz Gola, 2019. "Simulation of the Operation of a Spark Ignition Engine Fueled with Various Biofuels and Its Contribution to Technology Management," Sustainability, MDPI, Open Access Journal, vol. 11(10), pages 1-17, May.
    7. Karol Tucki & Olga Orynycz & Antoni Świć & Mateusz Mitoraj-Wojtanek, 2019. "The Development of Electromobility in Poland and EU States as a Tool for Management of CO 2 Emissions," Energies, MDPI, Open Access Journal, vol. 12(15), pages 1-22, July.
    8. Arkadiusz Piwowar & Maciej Dzikuć, 2019. "Development of Renewable Energy Sources in the Context of Threats Resulting from Low-Altitude Emissions in Rural Areas in Poland: A Review," Energies, MDPI, Open Access Journal, vol. 12(18), pages 1-15, September.
    9. Pavlovic, Jelica & Marotta, Alessandro & Ciuffo, Biagio, 2016. "CO2 emissions and energy demands of vehicles tested under the NEDC and the new WLTP type approval test procedures," Applied Energy, Elsevier, vol. 177(C), pages 661-670.
    10. Massaguer, E. & Massaguer, A. & Pujol, T. & Comamala, M. & Montoro, L. & Gonzalez, J.R., 2019. "Fuel economy analysis under a WLTP cycle on a mid-size vehicle equipped with a thermoelectric energy recovery system," Energy, Elsevier, vol. 179(C), pages 306-314.
    11. Wu, Tian & Han, Xiao & Zheng, M. Mocarlo & Ou, Xunmin & Sun, Hongbo & Zhang, Xiong, 2020. "Impact factors of the real-world fuel consumption rate of light duty vehicles in China," Energy, Elsevier, vol. 190(C).
    12. Millo, Federico & Giacominetto, Paolo Ferrero & Bernardi, Marco Gianoglio, 2012. "Analysis of different exhaust gas recirculation architectures for passenger car Diesel engines," Applied Energy, Elsevier, vol. 98(C), pages 79-91.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    computer simulation; technical condition of a vehicle; management of technological progress; diagnosis of vehicle’s technical condition;

    JEL classification:

    • Q - Agricultural and Natural Resource Economics; Environmental and Ecological Economics
    • Q0 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q49 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2869-:d:367477. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team). General contact details of provider: https://www.mdpi.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.