IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v86y2018icp1-21.html
   My bibliography  Save this article

A review of the European passenger car regulations – Real driving emissions vs local air quality

Author

Listed:
  • Hooftman, Nils
  • Messagie, Maarten
  • Van Mierlo, Joeri
  • Coosemans, Thierry

Abstract

Europe's regulation of passenger car emissions has been proven to have failed when it comes to nitrogen oxide emissions (NOx) by diesel engines. Due to historical decisions favouring diesel technology, Europe has become a diesel island with no equal worldwide. As a result, virtually every European citizen breathes in air which is deemed harmful to human health. Real driving emissions (RDE) testing by means of portable emissions measurement systems (PEMS) can potentially eliminate the discrepancy between lab and road tests, and will complement the dynamometer type-approval procedure from September 2017 onwards. Despite the significant potential of PEMS testing, the emission assessment has been watered down through politics to provide the automotive manufacturers with additional lead-time. In this way, the lab to road gap is not eliminated but only decreased. This means that diesel cars will continue to over-emit NOx until the 2020s at earliest. This has consequences for effectively bringing down local air quality issues, especially in low emission zones (LEZ).

Suggested Citation

  • Hooftman, Nils & Messagie, Maarten & Van Mierlo, Joeri & Coosemans, Thierry, 2018. "A review of the European passenger car regulations – Real driving emissions vs local air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 1-21.
  • Handle: RePEc:eee:rensus:v:86:y:2018:i:c:p:1-21
    DOI: 10.1016/j.rser.2018.01.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118300182
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.01.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsiakmakis, Stefanos & Fontaras, Georgios & Ciuffo, Biagio & Samaras, Zissis, 2017. "A simulation-based methodology for quantifying European passenger car fleet CO2 emissions," Applied Energy, Elsevier, vol. 199(C), pages 447-465.
    2. Messagie, Maarten & Mertens, Jan & Oliveira, Luis & Rangaraju, Surendraprabu & Sanfelix, Javier & Coosemans, Thierry & Van Mierlo, Joeri & Macharis, Cathy, 2014. "The hourly life cycle carbon footprint of electricity generation in Belgium, bringing a temporal resolution in life cycle assessment," Applied Energy, Elsevier, vol. 134(C), pages 469-476.
    3. Meyer, I. & Leimbach, M. & Jaeger, C.C., 2007. "International passenger transport and climate change: A sector analysis in car demand and associated CO2 emissions from 2000 to 2050," Energy Policy, Elsevier, vol. 35(12), pages 6332-6345, December.
    4. Maarten Messagie & Faycal-Siddikou Boureima & Thierry Coosemans & Cathy Macharis & Joeri Van Mierlo, 2014. "A Range-Based Vehicle Life Cycle Assessment Incorporating Variability in the Environmental Assessment of Different Vehicle Technologies and Fuels," Energies, MDPI, vol. 7(3), pages 1-16, March.
    5. Rangaraju, Surendraprabu & De Vroey, Laurent & Messagie, Maarten & Mertens, Jan & Van Mierlo, Joeri, 2015. "Impacts of electricity mix, charging profile, and driving behavior on the emissions performance of battery electric vehicles: A Belgian case study," Applied Energy, Elsevier, vol. 148(C), pages 496-505.
    6. Pavlovic, Jelica & Marotta, Alessandro & Ciuffo, Biagio, 2016. "CO2 emissions and energy demands of vehicles tested under the NEDC and the new WLTP type approval test procedures," Applied Energy, Elsevier, vol. 177(C), pages 661-670.
    7. Nils Hooftman & Luis Oliveira & Maarten Messagie & Thierry Coosemans & Joeri Van Mierlo, 2016. "Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting," Energies, MDPI, vol. 9(2), pages 1-24, January.
    8. Lucia, Umberto, 2016. "Econophysics and bio-chemical engineering thermodynamics: The exergetic analysis of a municipality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 421-430.
    9. Bishop, Justin D.K. & Stettler, Marc E.J. & Molden, N. & Boies, Adam M., 2016. "Engine maps of fuel use and emissions from transient driving cycles," Applied Energy, Elsevier, vol. 183(C), pages 202-217.
    10. Lucia, Umberto & Grisolia, Giulia, 2017. "Unavailability percentage as energy planning and economic choice parameter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 197-204.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinglong Liu & Fuquan Zhao & Han Hao & Kangda Chen & Zongwei Liu & Hassan Babiker & Amer Ahmad Amer, 2020. "From NEDC to WLTP: Effect on the Energy Consumption, NEV Credits, and Subsidies Policies of PHEV in the Chinese Market," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    2. Anca N. Iuga (Butnariu) & Vasile N. Popa & Luminița I. Popa, 2018. "Comparative Analysis of Automotive Products Regarding the Influence of Eco-Friendly Methods to Emissions’ Reduction," Energies, MDPI, vol. 12(1), pages 1-24, December.
    3. Karol Tucki & Remigiusz Mruk & Olga Orynycz & Andrzej Wasiak & Katarzyna Botwińska & Arkadiusz Gola, 2019. "Simulation of the Operation of a Spark Ignition Engine Fueled with Various Biofuels and Its Contribution to Technology Management," Sustainability, MDPI, vol. 11(10), pages 1-17, May.
    4. Nils Hooftman & Luis Oliveira & Maarten Messagie & Thierry Coosemans & Joeri Van Mierlo, 2016. "Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting," Energies, MDPI, vol. 9(2), pages 1-24, January.
    5. Salvo, Orlando de & Vaz de Almeida, Flávio G., 2019. "Influence of technologies on energy efficiency results of official Brazilian tests of vehicle energy consumption," Applied Energy, Elsevier, vol. 241(C), pages 98-112.
    6. Pan, Wei & Xue, Yu & He, Hong-Di & Lu, Wei-Zhen, 2018. "Impacts of traffic congestion on fuel rate, dissipation and particle emission in a single lane based on Nasch Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 154-162.
    7. Rupp, Matthias & Handschuh, Nils & Rieke, Christian & Kuperjans, Isabel, 2019. "Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: A case study of electric buses in Germany," Applied Energy, Elsevier, vol. 237(C), pages 618-634.
    8. Evangelos G. Giakoumis & Alexandros T. Zachiotis, 2017. "Investigation of a Diesel-Engined Vehicle’s Performance and Emissions during the WLTC Driving Cycle—Comparison with the NEDC," Energies, MDPI, vol. 10(2), pages 1-19, February.
    9. Umberto Lucia & Debora Fino & Giulia Grisolia, 2022. "A thermoeconomic indicator for the sustainable development with social considerations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2022-2036, February.
    10. Rangaraju, Surendraprabu & De Vroey, Laurent & Messagie, Maarten & Mertens, Jan & Van Mierlo, Joeri, 2015. "Impacts of electricity mix, charging profile, and driving behavior on the emissions performance of battery electric vehicles: A Belgian case study," Applied Energy, Elsevier, vol. 148(C), pages 496-505.
    11. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    12. He, Liqiang & Hu, Jingnan & Zhang, Shaojun & Wu, Ye & Zhu, Rencheng & Zu, Lei & Bao, Xiaofeng & Lai, Yitu & Su, Sheng, 2018. "The impact from the direct injection and multi-port fuel injection technologies for gasoline vehicles on solid particle number and black carbon emissions," Applied Energy, Elsevier, vol. 226(C), pages 819-826.
    13. Pavlovic, J. & Ciuffo, B. & Fontaras, G. & Valverde, V. & Marotta, A., 2018. "How much difference in type-approval CO2 emissions from passenger cars in Europe can be expected from changing to the new test procedure (NEDC vs. WLTP)?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 136-147.
    14. Cai, Yanpeng & Applegate, Scott & Yue, Wencong & Cai, Jianying & Wang, Xuan & Liu, Gengyuan & Li, Chunhui, 2017. "A hybrid life cycle and multi-criteria decision analysis approach for identifying sustainable development strategies of Beijing's taxi fleet," Energy Policy, Elsevier, vol. 100(C), pages 314-325.
    15. Marmiroli, Benedetta & Venditti, Mattia & Dotelli, Giovanni & Spessa, Ezio, 2020. "The transport of goods in the urban environment: A comparative life cycle assessment of electric, compressed natural gas and diesel light-duty vehicles," Applied Energy, Elsevier, vol. 260(C).
    16. Kangda Chen & Fuquan Zhao & Xinglong Liu & Han Hao & Zongwei Liu, 2021. "Impacts of the New Worldwide Light-Duty Test Procedure on Technology Effectiveness and China’s Passenger Vehicle Fuel Consumption Regulations," IJERPH, MDPI, vol. 18(6), pages 1-20, March.
    17. Ingrid Munné-Collado & Fabio Maria Aprà & Pol Olivella-Rosell & Roberto Villafáfila-Robles, 2019. "The Potential Role of Flexibility During Peak Hours on Greenhouse Gas Emissions: A Life Cycle Assessment of Five Targeted National Electricity Grid Mixes," Energies, MDPI, vol. 12(23), pages 1-22, November.
    18. Umberto Lucia & Giulia Grisolia, 2018. "Cyanobacteria and Microalgae : Thermoeconomic Considerations in Biofuel Production," Energies, MDPI, vol. 11(1), pages 1-16, January.
    19. Simone Cornago & Yee Shee Tan & Carlo Brondi & Seeram Ramakrishna & Jonathan Sze Choong Low, 2022. "Systematic Literature Review on Dynamic Life Cycle Inventory: Towards Industry 4.0 Applications," Sustainability, MDPI, vol. 14(11), pages 1-22, May.
    20. Anders Arvesen & Steve Völler & Christine Roxanne Hung & Volker Krey & Magnus Korpås & Anders Hammer Strømman, 2021. "Emissions of electric vehicle charging in future scenarios: The effects of time of charging," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1250-1263, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:86:y:2018:i:c:p:1-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.