IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v75y2017icp197-204.html
   My bibliography  Save this article

Unavailability percentage as energy planning and economic choice parameter

Author

Listed:
  • Lucia, Umberto
  • Grisolia, Giulia

Abstract

The unavailability percentage is suggested as an indicator of the level of the technological development in relation to the optimized use of energy. This quantity can be used in economic, and socio-political evaluations because it is related to the exergy lost during a process, and therefore it can provide information on the optimization level obtained through a technology or it can be useful to compare different technologies.

Suggested Citation

  • Lucia, Umberto & Grisolia, Giulia, 2017. "Unavailability percentage as energy planning and economic choice parameter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 197-204.
  • Handle: RePEc:eee:rensus:v:75:y:2017:i:c:p:197-204
    DOI: 10.1016/j.rser.2016.10.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116307328
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.10.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lucia, Umberto, 2013. "Stationary open systems: A brief review on contemporary theories on irreversibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1051-1062.
    2. Lucia, Umberto, 2013. "Thermodynamic paths and stochastic order in open systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 3912-3919.
    3. Wall, Goran, 1987. "Exergy conversion in the Swedish society," Resources and Energy, Elsevier, vol. 9(1), pages 55-73, June.
    4. Lucia, Umberto, 2013. "Carnot efficiency: Why?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3513-3517.
    5. Lucia, Umberto, 2007. "Irreversible entropy variation and the problem of the trend to equilibrium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 289-292.
    6. van Gool, W., 1987. "The value of energy carriers," Energy, Elsevier, vol. 12(6), pages 509-518.
    7. Wall, G., 1986. "Thermoeconomic optimization of a heat pump system," Energy, Elsevier, vol. 11(10), pages 957-967.
    8. Lucia, Umberto, 2009. "Irreversibility, entropy and incomplete information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4025-4033.
    9. Lucia, U., 2012. "Maximum or minimum entropy generation for open systems?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3392-3398.
    10. Wall, Göran & Sciubba, Enrico & Naso, Vincenzo, 1994. "Exergy use in the Italian society," Energy, Elsevier, vol. 19(12), pages 1267-1274.
    11. Enrico Sciubba, 2004. "From Engineering Economics to Extended Exergy Accounting: A Possible Path from Monetary to Resource‐Based Costing," Journal of Industrial Ecology, Yale University, vol. 8(4), pages 19-40, October.
    12. Massardo, A.F. & Santarelli, M. & Borchiellini, R., 2003. "Carbon exergy tax (CET): its impact on conventional energy system design and its contribution to advanced systems utilisation," Energy, Elsevier, vol. 28(7), pages 607-625.
    13. Lucia, Umberto, 2008. "Statistical approach of the irreversible entropy variation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3454-3460.
    14. Lucia, Umberto, 2016. "Econophysics and bio-chemical engineering thermodynamics: The exergetic analysis of a municipality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 421-430.
    15. Peter Hoeller & Jonathan Coppel, 1992. "Energy Taxation and Price Distortions in Fossil Fuel Markets: Some Implications for Climate Change Policy," OECD Economics Department Working Papers 110, OECD Publishing.
    16. Wall, Göran, 1988. "Exergy flows in industrial processes," Energy, Elsevier, vol. 13(2), pages 197-208.
    17. Umberto Lucia, 2014. "The Gouy-Stodola Theorem in Bioenergetic Analysis of Living Systems (Irreversibility in Bioenergetics of Living Systems)," Energies, MDPI, vol. 7(9), pages 1-23, September.
    18. Lucia, Umberto & Sciubba, Enrico, 2013. "From Lotka to the entropy generation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3634-3639.
    19. Lucia, Umberto, 2013. "Entropy and exergy in irreversible renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 559-564.
    20. Wall, Göran, 1990. "Exergy conversion in the Japanese society," Energy, Elsevier, vol. 15(5), pages 435-444.
    21. Lucia, Umberto, 2013. "Exergy flows as bases of constructal law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6284-6287.
    22. Ertesvåg, Ivar S & Mielnik, Michal, 2000. "Exergy analysis of the Norwegian society," Energy, Elsevier, vol. 25(10), pages 957-973.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giulia Grisolia & Umberto Lucia & Marco Filippo Torchio, 2022. "Sustainable Development and Workers Ability: Considerations on the Education Index in the Human Development Index," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    2. Mazhar, Abdur Rehman & Liu, Shuli & Shukla, Ashish, 2018. "A state of art review on the district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 420-439.
    3. Samanta A. Weber & Dirk Volta & Jürgen Kuck, 2022. "Comparison of the Energetic Efficiency of Gas Separation Technologies Using the Physical Optimum by the Example of Oxygen Supply Options," Energies, MDPI, vol. 15(5), pages 1-22, March.
    4. Umberto Lucia & Debora Fino & Giulia Grisolia, 2022. "A thermoeconomic indicator for the sustainable development with social considerations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2022-2036, February.
    5. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    6. Hooftman, Nils & Messagie, Maarten & Van Mierlo, Joeri & Coosemans, Thierry, 2018. "A review of the European passenger car regulations – Real driving emissions vs local air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 1-21.
    7. Marco Filippo Torchio & Umberto Lucia & Giulia Grisolia, 2020. "Economic and Human Features for Energy and Environmental Indicators: A Tool to Assess Countries’ Progress towards Sustainability," Sustainability, MDPI, vol. 12(22), pages 1-19, November.
    8. Rodriguez-Calvo, Andrea & Cossent, Rafael & Frías, Pablo, 2018. "Scalability and replicability analysis of large-scale smart grid implementations: Approaches and proposals in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 1-15.
    9. Pietrapertosa, Filomena & Khokhlov, Valeriy & Salvia, Monica & Cosmi, Carmelina, 2018. "Climate change adaptation policies and plans: A survey in 11 South East European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3041-3050.
    10. Giulia Grisolia & Debora Fino & Umberto Lucia, 2022. "Biomethanation of Rice Straw: A Sustainable Perspective for the Valorisation of a Field Residue in the Energy Sector," Sustainability, MDPI, vol. 14(9), pages 1-22, May.
    11. Pan, Wei & Xue, Yu & He, Hong-Di & Lu, Wei-Zhen, 2018. "Impacts of traffic congestion on fuel rate, dissipation and particle emission in a single lane based on Nasch Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 154-162.
    12. Anna Zylka & Jaroslaw Krzywanski & Tomasz Czakiert & Kamil Idziak & Marcin Sosnowski & Marcio L. de Souza-Santos & Karol Sztekler & Wojciech Nowak, 2020. "Modeling of the Chemical Looping Combustion of Hard Coal and Biomass Using Ilmenite as the Oxygen Carrier," Energies, MDPI, vol. 13(20), pages 1-17, October.
    13. Umberto Lucia & Giulia Grisolia, 2018. "Cyanobacteria and Microalgae : Thermoeconomic Considerations in Biofuel Production," Energies, MDPI, vol. 11(1), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucia, Umberto, 2016. "Econophysics and bio-chemical engineering thermodynamics: The exergetic analysis of a municipality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 421-430.
    2. Umberto Lucia & Giulia Grisolia, 2018. "Cyanobacteria and Microalgae : Thermoeconomic Considerations in Biofuel Production," Energies, MDPI, vol. 11(1), pages 1-16, January.
    3. Umberto Lucia, 2014. "The Gouy-Stodola Theorem in Bioenergetic Analysis of Living Systems (Irreversibility in Bioenergetics of Living Systems)," Energies, MDPI, vol. 7(9), pages 1-23, September.
    4. Lucia, Umberto, 2014. "Entropy generation approach to cell systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 1-11.
    5. Lucia, Umberto, 2014. "Entropy generation: Minimum inside and maximum outside," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 61-65.
    6. Lucia, Umberto, 2015. "Quanta and entropy generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 115-121.
    7. Lucia, Umberto, 2014. "Entropy generation and cell growth with comments for a thermodynamic anticancer approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 107-118.
    8. Lucia, Umberto, 2014. "Entropy generation and the Fokker–Planck equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 256-260.
    9. Lucia, Umberto, 2016. "Second law considerations on the third law: From Boltzmann and Loschmidt paradox to non equilibrium temperature," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 121-128.
    10. Lucia, Umberto & Simonetti, Marco & Chiesa, Giacomo & Grisolia, Giulia, 2017. "Ground-source pump system for heating and cooling: Review and thermodynamic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 867-874.
    11. Lucia, Umberto, 2013. "Exergy flows as bases of constructal law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6284-6287.
    12. Lucia, Umberto, 2013. "Entropy and exergy in irreversible renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 559-564.
    13. Lucia, Umberto, 2013. "Thermodynamic paths and stochastic order in open systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 3912-3919.
    14. Lucia, Umberto, 2014. "Overview on fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 164-169.
    15. Saidur, R. & Sattar, M.A. & Masjuki, H.H. & Abdessalam, H. & Shahruan, B.S., 2007. "Energy and exergy analysis at the utility and commercial sectors of Malaysia," Energy Policy, Elsevier, vol. 35(3), pages 1956-1966, March.
    16. Deng, Xinyang & Deng, Yong, 2014. "On the axiomatic requirement of range to measure uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 163-168.
    17. Dai, Jing & Fath, Brian & Chen, Bin, 2012. "Constructing a network of the social-economic consumption system of China using extended exergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4796-4808.
    18. Chen, G.Q. & Qi, Z.H., 2007. "Systems account of societal exergy utilization: China 2003," Ecological Modelling, Elsevier, vol. 208(2), pages 102-118.
    19. Serrenho, André Cabrera & Warr, Benjamin & Sousa, Tânia & Ayres, Robert U. & Domingos, Tiago, 2016. "Structure and dynamics of useful work along the agriculture-industry-services transition: Portugal from 1856 to 2009," Structural Change and Economic Dynamics, Elsevier, vol. 36(C), pages 1-21.
    20. Qi, Hai & Dong, Zhiliang & Dong, Shaohui & Sun, Xiaotian & Zhao, Yiran & Li, Yu, 2021. "Extended exergy accounting for smelting and pressing of metals industry in China," Resources Policy, Elsevier, vol. 74(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:75:y:2017:i:c:p:197-204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.