IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i5p1051-1062.html
   My bibliography  Save this article

Stationary open systems: A brief review on contemporary theories on irreversibility

Author

Listed:
  • Lucia, Umberto

Abstract

Open systems are very important in science and engineering for their applications and the analysis of the real word. At their steady state, two apparently opposed principles for their rate of entropy production have been proposed: the minimum entropy production rate and the maximum entropy production, useful in the analysis of dissipation and irreversibility of different processes in physics, chemistry, biology and engineering. Both principles involve an extremum of the rate of the entropy production at the steady state under non-equilibrium conditions. On the other hand, in engineering thermodynamics, dissipation and irreversibility are analyzed using the entropy generation, for which there exist two principle of extrema too, the minimum and the maximum principle. Finally, oppositions to the extrema principle have been developed too. In this paper, all these extrema principles will be analyzed in order to point out the relations among them and a synthesis useful in engineering applications, in physical and chemical process analysis and in biology and biotechnology will be proposed.

Suggested Citation

  • Lucia, Umberto, 2013. "Stationary open systems: A brief review on contemporary theories on irreversibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1051-1062.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:5:p:1051-1062
    DOI: 10.1016/j.physa.2012.11.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112009922
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.11.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Mingtian, 2011. "The thermodynamic basis of entransy and entransy dissipation," Energy, Elsevier, vol. 36(7), pages 4272-4277.
    2. Sharma, Vivek & Kaila, Ville R.I. & Annila, Arto, 2009. "Protein folding as an evolutionary process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 851-862.
    3. Lucia, Umberto, 2007. "Irreversible entropy variation and the problem of the trend to equilibrium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 289-292.
    4. Wang, Qiuping A., 2005. "Non-quantum uncertainty relations of stochastic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 26(4), pages 1045-1052.
    5. Lucia, U., 2012. "Maximum or minimum entropy generation for open systems?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3392-3398.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucia, Umberto, 2014. "Entropy generation and the Fokker–Planck equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 256-260.
    2. Umberto Lucia, 2014. "The Gouy-Stodola Theorem in Bioenergetic Analysis of Living Systems (Irreversibility in Bioenergetics of Living Systems)," Energies, MDPI, vol. 7(9), pages 1-23, September.
    3. Lucia, Umberto, 2013. "Thermodynamic paths and stochastic order in open systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 3912-3919.
    4. Umberto Lucia & Giulia Grisolia, 2018. "Cyanobacteria and Microalgae : Thermoeconomic Considerations in Biofuel Production," Energies, MDPI, vol. 11(1), pages 1-16, January.
    5. Lucia, Umberto & Grisolia, Giulia, 2017. "Unavailability percentage as energy planning and economic choice parameter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 197-204.
    6. Lucia, Umberto, 2014. "Entropy generation: Minimum inside and maximum outside," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 61-65.
    7. Lucia, Umberto, 2014. "Entropy generation approach to cell systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 1-11.
    8. Lucia, Umberto, 2016. "Econophysics and bio-chemical engineering thermodynamics: The exergetic analysis of a municipality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 421-430.
    9. Xu, Mingtian, 2012. "Variational principles in terms of entransy for heat transfer," Energy, Elsevier, vol. 44(1), pages 973-977.
    10. Makhanlall, D. & Liu, L.H. & Zhang, H.C., 2010. "SLA (Second-law analysis) of transient radiative transfer processes," Energy, Elsevier, vol. 35(12), pages 5151-5160.
    11. Annila, Arto, 2016. "Natural thermodynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 843-852.
    12. Guo, Jiangfeng & Huai, Xiulan, 2012. "Optimization design of recuperator in a chemical heat pump system based on entransy dissipation theory," Energy, Elsevier, vol. 41(1), pages 335-343.
    13. Chatterjee, Atanu & Ban, Takahiko & Iannacchione, Germano, 2022. "Evidence of local equilibrium in a non-turbulent Rayleigh–Bénard convection at steady-state," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    14. Lucia, Umberto, 2015. "Quanta and entropy generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 115-121.
    15. Lucia, Umberto, 2010. "Maximum entropy generation and κ-exponential model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4558-4563.
    16. Lucia, Umberto, 2009. "Irreversibility, entropy and incomplete information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4025-4033.
    17. Lucia, Umberto & Sciubba, Enrico, 2013. "From Lotka to the entropy generation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3634-3639.
    18. Lucia, Umberto, 2014. "Thermodynamic approach to nano-properties of cell membrane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 185-191.
    19. Xia, Shaojun & Chen, Lingen & Sun, Fengrui, 2011. "Power-optimization of non-ideal energy converters under generalized convective heat transfer law via Hamilton-Jacobi-Bellman theory," Energy, Elsevier, vol. 36(1), pages 633-646.
    20. Lucia, Umberto, 2014. "Entropy generation and cell growth with comments for a thermodynamic anticancer approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 107-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:5:p:1051-1062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.