IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i11p6464-d823826.html
   My bibliography  Save this article

Systematic Literature Review on Dynamic Life Cycle Inventory: Towards Industry 4.0 Applications

Author

Listed:
  • Simone Cornago

    (Singapore Institute of Manufacturing Technology, 2 Fusionopolis Way, Singapore 138634, Singapore
    Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore)

  • Yee Shee Tan

    (Singapore Institute of Manufacturing Technology, 2 Fusionopolis Way, Singapore 138634, Singapore)

  • Carlo Brondi

    (STIIMA-CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Via Alfonso Corti 12, 20133 Milan, Italy)

  • Seeram Ramakrishna

    (Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore)

  • Jonathan Sze Choong Low

    (Singapore Institute of Manufacturing Technology, 2 Fusionopolis Way, Singapore 138634, Singapore)

Abstract

Life cycle assessment (LCA) is a well-established methodology to quantify the environmental impacts of products, processes, and services. An advanced branch of this methodology, dynamic LCA, is increasingly used to reflect the variation in such potential impacts over time. The most common form of dynamic LCA focuses on the dynamism of the life cycle inventory (LCI) phase, which can be enabled by digital models or sensors for a continuous data collection. We adopt a systematic literature review with the aim to support practitioners looking to apply dynamic LCI, particularly in Industry 4.0 applications. We select 67 publications related to dynamic LCI studies to analyze their goal and scope phase and how the dynamic element is integrated in the studies. We describe and discuss methods and applications for dynamic LCI, particularly those involving continuous data collection. Electricity consumption and/or electricity technology mixes are the most used dynamic components in the LCI, with 39 publications in total. This interest can be explained by variability over time and the relevance of electricity consumption as a driver of environmental impacts. Finally, we highlight eight research gaps that, when successfully addressed, could benefit the diffusion and development of sound dynamic LCI studies.

Suggested Citation

  • Simone Cornago & Yee Shee Tan & Carlo Brondi & Seeram Ramakrishna & Jonathan Sze Choong Low, 2022. "Systematic Literature Review on Dynamic Life Cycle Inventory: Towards Industry 4.0 Applications," Sustainability, MDPI, vol. 14(11), pages 1-22, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6464-:d:823826
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/11/6464/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/11/6464/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Davide Rovelli & Carlo Brondi & Michele Andreotti & Elisabetta Abbate & Maurizio Zanforlin & Andrea Ballarino, 2022. "A Modular Tool to Support Data Management for LCA in Industry: Methodology, Application and Potentialities," Sustainability, MDPI, vol. 14(7), pages 1-31, March.
    2. Alexis Laurent & Bo P. Weidema & Jane Bare & Xun Liao & Danielle Maia de Souza & Massimo Pizzol & Serenella Sala & Hanna Schreiber & Nils Thonemann & Francesca Verones, 2020. "Methodological review and detailed guidance for the life cycle interpretation phase," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 986-1003, October.
    3. Ingrid Munné-Collado & Fabio Maria Aprà & Pol Olivella-Rosell & Roberto Villafáfila-Robles, 2019. "The Potential Role of Flexibility During Peak Hours on Greenhouse Gas Emissions: A Life Cycle Assessment of Five Targeted National Electricity Grid Mixes," Energies, MDPI, vol. 12(23), pages 1-22, November.
    4. Raghu KC & Mika Aalto & Olli-Jussi Korpinen & Tapio Ranta & Svetlana Proskurina, 2020. "Lifecycle Assessment of Biomass Supply Chain with the Assistance of Agent-Based Modelling," Sustainability, MDPI, vol. 12(5), pages 1-14, March.
    5. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    6. Dalenogare, Lucas Santos & Benitez, Guilherme Brittes & Ayala, Néstor Fabián & Frank, Alejandro Germán, 2018. "The expected contribution of Industry 4.0 technologies for industrial performance," International Journal of Production Economics, Elsevier, vol. 204(C), pages 383-394.
    7. Shelie A. Miller & Stephen Moysey & Benjamin Sharp & Jose Alfaro, 2013. "A Stochastic Approach to Model Dynamic Systems in Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 17(3), pages 352-362, June.
    8. Amor, Mourad Ben & Gaudreault, Caroline & Pineau, Pierre-Olivier & Samson, Réjean, 2014. "Implications of integrating electricity supply dynamics into life cycle assessment: A case study of renewable distributed generation," Renewable Energy, Elsevier, vol. 69(C), pages 410-419.
    9. Messagie, Maarten & Mertens, Jan & Oliveira, Luis & Rangaraju, Surendraprabu & Sanfelix, Javier & Coosemans, Thierry & Van Mierlo, Joeri & Macharis, Cathy, 2014. "The hourly life cycle carbon footprint of electricity generation in Belgium, bringing a temporal resolution in life cycle assessment," Applied Energy, Elsevier, vol. 134(C), pages 469-476.
    10. Vuarnoz, Didier & Jusselme, Thomas, 2018. "Temporal variations in the primary energy use and greenhouse gas emissions of electricity provided by the Swiss grid," Energy, Elsevier, vol. 161(C), pages 573-582.
    11. Rangaraju, Surendraprabu & De Vroey, Laurent & Messagie, Maarten & Mertens, Jan & Van Mierlo, Joeri, 2015. "Impacts of electricity mix, charging profile, and driving behavior on the emissions performance of battery electric vehicles: A Belgian case study," Applied Energy, Elsevier, vol. 148(C), pages 496-505.
    12. Anders Arvesen & Steve Völler & Christine Roxanne Hung & Volker Krey & Magnus Korpås & Anders Hammer Strømman, 2021. "Emissions of electric vehicle charging in future scenarios: The effects of time of charging," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1250-1263, October.
    13. Xiaoxia Chen & Mélanie Despeisse & Björn Johansson, 2020. "Environmental Sustainability of Digitalization in Manufacturing: A Review," Sustainability, MDPI, vol. 12(24), pages 1-31, December.
    14. Matthew O'Connor & Gil Garnier & Warren Batchelor, 2013. "Life Cycle Assessment of Advanced Industrial Wastewater Treatment Within an Urban Environment," Journal of Industrial Ecology, Yale University, vol. 17(5), pages 712-721, October.
    15. Roberta Olindo & Nathalie Schmitt & Joost Vogtländer, 2021. "Life Cycle Assessments on Battery Electric Vehicles and Electrolytic Hydrogen: The Need for Calculation Rules and Better Databases on Electricity," Sustainability, MDPI, vol. 13(9), pages 1-22, May.
    16. Di Florio, Giuseppe & Macchi, Edoardo Gino & Mongibello, Luigi & Baratto, Maria Camilla & Basosi, Riccardo & Busi, Elena & Caliano, Martina & Cigolotti, Viviana & Testi, Matteo & Trini, Martina, 2021. "Comparative life cycle assessment of two different SOFC-based cogeneration systems with thermal energy storage integrated into a single-family house nanogrid," Applied Energy, Elsevier, vol. 285(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anders Arvesen & Steve Völler & Christine Roxanne Hung & Volker Krey & Magnus Korpås & Anders Hammer Strømman, 2021. "Emissions of electric vehicle charging in future scenarios: The effects of time of charging," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1250-1263, October.
    2. Dahlia Byles & Salman Mohagheghi, 2023. "Sustainable Power Grid Expansion: Life Cycle Assessment, Modeling Approaches, Challenges, and Opportunities," Sustainability, MDPI, vol. 15(11), pages 1-25, May.
    3. Frapin, Marie & Roux, Charlotte & Assoumou, Edi & Peuportier, Bruno, 2022. "Modelling long-term and short-term temporal variation and uncertainty of electricity production in the life cycle assessment of buildings," Applied Energy, Elsevier, vol. 307(C).
    4. Tianran Ding & Wouter Achten, 2023. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359527, ULB -- Universite Libre de Bruxelles.
    5. Olkkonen, Ville & Hirvonen, Janne & Heljo, Juhani & Syri, Sanna, 2021. "Effectiveness of building stock sustainability measures in a low-carbon energy system: A scenario analysis for Finland until 2050," Energy, Elsevier, vol. 235(C).
    6. Zacharopoulos, Leon & Thonemann, Nils & Dumeier, Marcel & Geldermann, Jutta, 2023. "Environmental optimization of the charge of battery electric vehicles," Applied Energy, Elsevier, vol. 329(C).
    7. Maxwell Woody & Michael T. Craig & Parth T. Vaishnav & Geoffrey M. Lewis & Gregory A. Keoleian, 2022. "Optimizing future cost and emissions of electric delivery vehicles," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1108-1122, June.
    8. Nils Hooftman & Luis Oliveira & Maarten Messagie & Thierry Coosemans & Joeri Van Mierlo, 2016. "Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting," Energies, MDPI, vol. 9(2), pages 1-24, January.
    9. Zhaoyuan He & Paul Turner, 2021. "A Systematic Review on Technologies and Industry 4.0 in the Forest Supply Chain: A Framework Identifying Challenges and Opportunities," Logistics, MDPI, vol. 5(4), pages 1-22, December.
    10. Ingrid Munné-Collado & Fabio Maria Aprà & Pol Olivella-Rosell & Roberto Villafáfila-Robles, 2019. "The Potential Role of Flexibility During Peak Hours on Greenhouse Gas Emissions: A Life Cycle Assessment of Five Targeted National Electricity Grid Mixes," Energies, MDPI, vol. 12(23), pages 1-22, November.
    11. Nicole A. Ryan & Jeremiah X. Johnson & Gregory A. Keoleian & Geoffrey M. Lewis, 2018. "Decision Support Algorithm for Evaluating Carbon Dioxide Emissions from Electricity Generation in the United States," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1318-1330, December.
    12. Fleschutz, Markus & Bohlayer, Markus & Braun, Marco & Henze, Gregor & Murphy, Michael D., 2021. "The effect of price-based demand response on carbon emissions in European electricity markets: The importance of adequate carbon prices," Applied Energy, Elsevier, vol. 295(C).
    13. Hooftman, Nils & Messagie, Maarten & Van Mierlo, Joeri & Coosemans, Thierry, 2018. "A review of the European passenger car regulations – Real driving emissions vs local air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 1-21.
    14. Rupp, Matthias & Handschuh, Nils & Rieke, Christian & Kuperjans, Isabel, 2019. "Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: A case study of electric buses in Germany," Applied Energy, Elsevier, vol. 237(C), pages 618-634.
    15. Nils Seckinger & Peter Radgen, 2021. "Dynamic Prospective Average and Marginal GHG Emission Factors—Scenario-Based Method for the German Power System until 2050," Energies, MDPI, vol. 14(9), pages 1-22, April.
    16. Rita Garcia & Fausto Freire, 2016. "Marginal Life-Cycle Greenhouse Gas Emissions of Electricity Generation in Portugal and Implications for Electric Vehicles," Resources, MDPI, vol. 5(4), pages 1-15, November.
    17. Hamels, Sam & Himpe, Eline & Laverge, Jelle & Delghust, Marc & Van den Brande, Kjartan & Janssens, Arnold & Albrecht, Johan, 2021. "The use of primary energy factors and CO2 intensities for electricity in the European context - A systematic methodological review and critical evaluation of the contemporary literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    18. Will, Christian & Zimmermann, Florian & Ensslen, Axel & Fraunholz, Christoph & Jochem, Patrick & Keles, Dogan, 2023. "Can electric vehicle charging be carbon neutral? Uniting smart charging and renewables," Working Paper Series in Production and Energy 69, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    19. Tianran Ding & Wouter Achten, 2022. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/352782, ULB -- Universite Libre de Bruxelles.
    20. Ghulam E Mustafa Abro & Saiful Azrin B. M. Zulkifli & Kundan Kumar & Najib El Ouanjli & Vijanth Sagayan Asirvadam & Mahmoud A. Mossa, 2023. "Comprehensive Review of Recent Advancements in Battery Technology, Propulsion, Power Interfaces, and Vehicle Network Systems for Intelligent Autonomous and Connected Electric Vehicles," Energies, MDPI, vol. 16(6), pages 1-31, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6464-:d:823826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.