IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v5y2021i4p88-d698000.html
   My bibliography  Save this article

A Systematic Review on Technologies and Industry 4.0 in the Forest Supply Chain: A Framework Identifying Challenges and Opportunities

Author

Listed:
  • Zhaoyuan He

    (School of Information and Communication Technology, University of Tasmania, Hobart, TAS 7001, Australia)

  • Paul Turner

    (School of Information and Communication Technology, University of Tasmania, Hobart, TAS 7001, Australia)

Abstract

Background: Forestry products and forestry organizations play an essential role in our lives and significantly contribute to the global economy. They are also being impacted by the rapid development of advanced technologies and Industry 4.0. More specifically, several technologies associated with Industry 4.0 have been identified for their potential to optimize traditional forest supply chains. However, to date, there has been limited research that has systematically investigated these technologies and the scientific evidence on their impact on forest supply chains. This research systematically reviews the state-of-the-art technologies applied in the forest supply chain and reports on the current (and/or potential) impacts of technologies on the transformation of the forest supply chain towards ‘Forest Industry 4.0′. Methods: The systematic literature review methodology identified 45 peer-reviewed studies for inclusion that are analyzed, interpreted and discussed in this paper. Results: This study developed a framework on the forest supply chain in Industry 4.0. This framework has three components related to forest supply chains: current supportive technologies, improvements and characteristics of the forest supply chain in Industry 4.0, and the strategic outcomes in economic, environmental and social dimensions. The reported impacts of technologies in different phases of the forest supply chain are interpreted and discussed. Conclusion: The study results confirm that most technologies in Industry 4.0 have real or perceived positive impacts on the forest supply chain and reported obstacles and challenges are identified. The results of this study also contribute insights on the wide range of options in terms of technologies available to decision-makers to optimize the forest supply chain towards ‘Forest Industry 4.0′.

Suggested Citation

  • Zhaoyuan He & Paul Turner, 2021. "A Systematic Review on Technologies and Industry 4.0 in the Forest Supply Chain: A Framework Identifying Challenges and Opportunities," Logistics, MDPI, vol. 5(4), pages 1-22, December.
  • Handle: RePEc:gam:jlogis:v:5:y:2021:i:4:p:88-:d:698000
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/5/4/88/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/5/4/88/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dominika Šulyová & Gabriel Koman, 2020. "The Significance of IoT Technology in Improving Logistical Processes and Enhancing Competitiveness: A Case Study on the World’s and Slovakia’s Wood-Processing Enterprises," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    2. Mobini, Mahdi & Sowlati, Taraneh & Sokhansanj, Shahab, 2013. "A simulation model for the design and analysis of wood pellet supply chains," Applied Energy, Elsevier, vol. 111(C), pages 1239-1249.
    3. Liu, Wan-Yu & Lin, Chun-Cheng & Yeh, Tzu-Lei, 2017. "Supply chain optimization of forest biomass electricity and bioethanol coproduction," Energy, Elsevier, vol. 139(C), pages 630-645.
    4. Morin, Michael & Gaudreault, Jonathan & Brotherton, Edith & Paradis, Frédérik & Rolland, Amélie & Wery, Jean & Laviolette, François, 2020. "Machine learning-based models of sawmills for better wood allocation planning," International Journal of Production Economics, Elsevier, vol. 222(C).
    5. Ercan Oztemel & Samet Gursev, 2020. "Literature review of Industry 4.0 and related technologies," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 127-182, January.
    6. Windisch, Johannes & Väätäinen, Kari & Anttila, Perttu & Nivala, Mikko & Laitila, Juha & Asikainen, Antti & Sikanen, Lauri, 2015. "Discrete-event simulation of an information-based raw material allocation process for increasing the efficiency of an energy wood supply chain," Applied Energy, Elsevier, vol. 149(C), pages 315-325.
    7. Prinz, Robert & Väätäinen, Kari & Laitila, Juha & Sikanen, Lauri & Asikainen, Antti, 2019. "Analysis of energy efficiency of forest chip supply systems using discrete-event simulation," Applied Energy, Elsevier, vol. 235(C), pages 1369-1380.
    8. Raghu KC & Mika Aalto & Olli-Jussi Korpinen & Tapio Ranta & Svetlana Proskurina, 2020. "Lifecycle Assessment of Biomass Supply Chain with the Assistance of Agent-Based Modelling," Sustainability, MDPI, vol. 12(5), pages 1-14, March.
    9. Ouhimmou, Mustapha & Rönnqvist, Mikael & Lapointe, Louis-Alexandre, 2021. "Assessment of sustainable integration of new products into value chain through a generic decision support model: An application to the forest value chain," Omega, Elsevier, vol. 99(C).
    10. Sosa, Amanda & Acuna, Mauricio & McDonnell, Kevin & Devlin, Ger, 2015. "Managing the moisture content of wood biomass for the optimisation of Ireland's transport supply strategy to bioenergy markets and competing industries," Energy, Elsevier, vol. 86(C), pages 354-368.
    11. Dalenogare, Lucas Santos & Benitez, Guilherme Brittes & Ayala, Néstor Fabián & Frank, Alejandro Germán, 2018. "The expected contribution of Industry 4.0 technologies for industrial performance," International Journal of Production Economics, Elsevier, vol. 204(C), pages 383-394.
    12. David Moher & Alessandro Liberati & Jennifer Tetzlaff & Douglas G Altman & The PRISMA Group, 2009. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement," PLOS Medicine, Public Library of Science, vol. 6(7), pages 1-6, July.
    13. Zhang, Fengli & Johnson, Dana & Johnson, Mark & Watkins, David & Froese, Robert & Wang, Jinjiang, 2016. "Decision support system integrating GIS with simulation and optimisation for a biofuel supply chain," Renewable Energy, Elsevier, vol. 85(C), pages 740-748.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niloofar Jefroy & Mathew Azarian & Hao Yu, 2022. "Moving from Industry 4.0 to Industry 5.0: What Are the Implications for Smart Logistics?," Logistics, MDPI, vol. 6(2), pages 1, April.
    2. Alex Vinicio Gavilanes Montoya & Danny Daniel Castillo Vizuete & Marina Viorela Marcu, 2023. "Exploring the Role of ICTs and Communication Flows in the Forest Sector," Sustainability, MDPI, vol. 15(14), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eriksson, Anders & Eliasson, Lars & Sikanen, Lauri & Hansson, Per-Anders & Jirjis, Raida, 2017. "Evaluation of delivery strategies for forest fuels applying a model for Weather-driven Analysis of Forest Fuel Systems (WAFFS)," Applied Energy, Elsevier, vol. 188(C), pages 420-430.
    2. Mosayeb Dashtpeyma & Reza Ghodsi, 2021. "Forest Biomass and Bioenergy Supply Chain Resilience: A Systematic Literature Review on the Barriers and Enablers," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    3. De Boeck, Kim & Decouttere, Catherine & Jónasson, Jónas Oddur & Vandaele, Nico, 2022. "Vaccine supply chains in resource-limited settings: Mitigating the impact of rainy season disruptions," European Journal of Operational Research, Elsevier, vol. 301(1), pages 300-317.
    4. Eliasson, Lars & Eriksson, Anders & Mohtashami, Sima, 2017. "Analysis of factors affecting productivity and costs for a high-performance chip supply system," Applied Energy, Elsevier, vol. 185(P1), pages 497-505.
    5. Olli-Jussi Korpinen & Mika Aalto & Raghu KC & Timo Tokola & Tapio Ranta, 2023. "Utilisation of Spatial Data in Energy Biomass Supply Chain Research—A Review," Energies, MDPI, vol. 16(2), pages 1-23, January.
    6. Juha Laitila & Robert Prinz & Lauri Sikanen, 2019. "Selection of a chipper technology for small-scale operations - a Finnish case," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 65(4), pages 121-133.
    7. Liu, Wan-Yu & Lin, Chun-Cheng & Yeh, Tzu-Lei, 2017. "Supply chain optimization of forest biomass electricity and bioethanol coproduction," Energy, Elsevier, vol. 139(C), pages 630-645.
    8. Shiyu Chen & Wei Wang & Enrico Zio, 2021. "A Simulation-Based Multi-Objective Optimization Framework for the Production Planning in Energy Supply Chains," Energies, MDPI, vol. 14(9), pages 1-27, May.
    9. Nadeem Akhtar & Nohman Khan & Muhammad Mahroof Khan & Shagufta Ashraf & Muhammad Saim Hashmi & Muhammad Muddassar Khan & Sanil S. Hishan, 2021. "Post-COVID 19 Tourism: Will Digital Tourism Replace Mass Tourism?," Sustainability, MDPI, vol. 13(10), pages 1-18, May.
    10. Katarzyna Szum & Joanicjusz Nazarko, 2020. "Exploring the Determinants of Industry 4.0 Development Using an Extended SWOT Analysis: A Regional Study," Energies, MDPI, vol. 13(22), pages 1-27, November.
    11. Battuvshin, Biligt & Matsuoka, Yusuke & Shirasawa, Hiroaki & Toyama, Keisuke & Hayashi, Uichi & Aruga, Kazuhiro, 2020. "Supply potential and annual availability of timber and forest biomass resources for energy considering inter-prefectural trade in Japan," Land Use Policy, Elsevier, vol. 97(C).
    12. Simone Cornago & Yee Shee Tan & Carlo Brondi & Seeram Ramakrishna & Jonathan Sze Choong Low, 2022. "Systematic Literature Review on Dynamic Life Cycle Inventory: Towards Industry 4.0 Applications," Sustainability, MDPI, vol. 14(11), pages 1-22, May.
    13. Stornelli, Aldo & Ozcan, Sercan & Simms, Christopher, 2021. "Advanced manufacturing technology adoption and innovation: A systematic literature review on barriers, enablers, and innovation types," Research Policy, Elsevier, vol. 50(6).
    14. Alok Raj & Anand Jeyaraj, 2023. "Antecedents and consequents of industry 4.0 adoption using technology, organization and environment (TOE) framework: A meta-analysis," Annals of Operations Research, Springer, vol. 322(1), pages 101-124, March.
    15. Ng, Rex T.L. & Kurniawan, Daniel & Wang, Hua & Mariska, Brian & Wu, Wenzhao & Maravelias, Christos T., 2018. "Integrated framework for designing spatially explicit biofuel supply chains," Applied Energy, Elsevier, vol. 216(C), pages 116-131.
    16. Usama Awan & Robert Sroufe & Muhammad Shahbaz, 2021. "Industry 4.0 and the circular economy: A literature review and recommendations for future research," Business Strategy and the Environment, Wiley Blackwell, vol. 30(4), pages 2038-2060, May.
    17. Lioutas, Evagelos D. & Charatsari, Chrysanthi & De Rosa, Marcello, 2021. "Digitalization of agriculture: A way to solve the food problem or a trolley dilemma?," Technology in Society, Elsevier, vol. 67(C).
    18. Luis Fonseca & António Amaral & José Oliveira, 2021. "Quality 4.0: The EFQM 2020 Model and Industry 4.0 Relationships and Implications," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    19. Tortorella, Guilherme Luz & Saurin, Tarcísio Abreu & Filho, Moacir Godinho & Samson, Daniel & Kumar, Maneesh, 2021. "Bundles of Lean Automation practices and principles and their impact on operational performance," International Journal of Production Economics, Elsevier, vol. 235(C).
    20. Lee, Changhun & Lim, Chiehyeon, 2021. "From technological development to social advance: A review of Industry 4.0 through machine learning," Technological Forecasting and Social Change, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:5:y:2021:i:4:p:88-:d:698000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.