IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i18p4826-d1746980.html
   My bibliography  Save this article

Environmental Impact of Slovenian and Croatian Electricity Generation Using an Hourly Production-Based Dynamic Life Cycle Assessment Approach

Author

Listed:
  • Jelena Topić Božič

    (Rudolfovo—Science and Technology Centre Novo Mesto, Podbreznik 15, 8000 Novo Mesto, Slovenia
    Faculty of Industrial Engineering, Šegova ulica 112, 8000 Novo Mesto, Slovenia)

  • Ante Čikić

    (Department of Mechatronics, University North, 104. Brigade 3, 42000 Varaždin, Croatia)

  • Simon Muhič

    (Rudolfovo—Science and Technology Centre Novo Mesto, Podbreznik 15, 8000 Novo Mesto, Slovenia
    Faculty of Industrial Engineering, Šegova ulica 112, 8000 Novo Mesto, Slovenia
    Institute for Renewable Energy and Efficient Exergy Use, INOVEKS d.o.o, Cesta 2. Grupe Odredov 17, 1295 Ivančna Gorica, Slovenia)

Abstract

A temporal and dynamic approach to the environmental impact of electricity production is necessary to accurately determine its impact. This study aimed to assess the environmental impacts of domestic electricity generation technologies in Slovenia and Croatia using a production-based dynamic life cycle assessment approach for 2020–2024. Hourly resolved actual generation per production type from the ENTSO-E Transparency platform was used and mapped to the Ecoinvent electricity generation datasets. The results showed lower impacts in the climate change category, which correlated with periods of higher renewable contributions. The relative standard deviation values were 21.6% and 18.6% for Slovenia and Croatia, respectively. A higher average impact on resource use, minerals and metals was observed in the Croatian electricity production mix. In Slovenia, significant fluctuations in solar power generation led to a high coefficient of variation of 90.5% in the resource use, minerals and metals impact category, with higher values observed in summer owing to the seasonality of photovoltaic generation. Conversely, Croatia exhibited substantial hourly variability in wind power generation (6.0–629.3 MW), with a relative standard deviation of 18.9%. The results highlight the potential for optimizing the operation of flexible appliances and electric vehicle charging based on real-time emission intensity, contributing to lower environmental impacts through smarter energy use.

Suggested Citation

  • Jelena Topić Božič & Ante Čikić & Simon Muhič, 2025. "Environmental Impact of Slovenian and Croatian Electricity Generation Using an Hourly Production-Based Dynamic Life Cycle Assessment Approach," Energies, MDPI, vol. 18(18), pages 1-24, September.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:18:p:4826-:d:1746980
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/18/4826/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/18/4826/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giambattista Guidi & Anna Carmela Violante & Simona De Iuliis, 2023. "Environmental Impact of Electricity Generation Technologies: A Comparison between Conventional, Nuclear, and Renewable Technologies," Energies, MDPI, vol. 16(23), pages 1-33, November.
    2. Filipović, Sanja & Lior, Noam & Radovanović, Mirjana, 2022. "The green deal – just transition and sustainable development goals Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Messagie, Maarten & Mertens, Jan & Oliveira, Luis & Rangaraju, Surendraprabu & Sanfelix, Javier & Coosemans, Thierry & Van Mierlo, Joeri & Macharis, Cathy, 2014. "The hourly life cycle carbon footprint of electricity generation in Belgium, bringing a temporal resolution in life cycle assessment," Applied Energy, Elsevier, vol. 134(C), pages 469-476.
    4. John Clauß & Sebastian Stinner & Christian Solli & Karen Byskov Lindberg & Henrik Madsen & Laurent Georges, 2019. "Evaluation Method for the Hourly Average CO 2eq. Intensity of the Electricity Mix and Its Application to the Demand Response of Residential Heating," Energies, MDPI, vol. 12(7), pages 1-25, April.
    5. Wolf, Isabel & Holzapfel, Peter K.R. & Meschede, Henning & Finkbeiner, Matthias, 2023. "On the potential of temporally resolved GHG emission factors for load shifting: A case study on electrified steam generation," Applied Energy, Elsevier, vol. 348(C).
    6. Dahlia Byles & Salman Mohagheghi, 2023. "Sustainable Power Grid Expansion: Life Cycle Assessment, Modeling Approaches, Challenges, and Opportunities," Sustainability, MDPI, vol. 15(11), pages 1-25, May.
    7. Frapin, Marie & Roux, Charlotte & Assoumou, Edi & Peuportier, Bruno, 2022. "Modelling long-term and short-term temporal variation and uncertainty of electricity production in the life cycle assessment of buildings," Applied Energy, Elsevier, vol. 307(C).
    8. Keček, Damira & Mikulić, Davor & Lovrinčević, Željko, 2019. "Deployment of renewable energy: Economic effects on the Croatian economy," Energy Policy, Elsevier, vol. 126(C), pages 402-410.
    9. Ninoslav Holjevac & Tomislav Baškarad & Josip Đaković & Matej Krpan & Matija Zidar & Igor Kuzle, 2021. "Challenges of High Renewable Energy Sources Integration in Power Systems—The Case of Croatia," Energies, MDPI, vol. 14(4), pages 1-20, February.
    10. Vuarnoz, Didier & Jusselme, Thomas, 2018. "Temporal variations in the primary energy use and greenhouse gas emissions of electricity provided by the Swiss grid," Energy, Elsevier, vol. 161(C), pages 573-582.
    11. Rangaraju, Surendraprabu & De Vroey, Laurent & Messagie, Maarten & Mertens, Jan & Van Mierlo, Joeri, 2015. "Impacts of electricity mix, charging profile, and driving behavior on the emissions performance of battery electric vehicles: A Belgian case study," Applied Energy, Elsevier, vol. 148(C), pages 496-505.
    12. Firtescu, Bogdan Narcis & Bostan, Ionel & Grosu, Maria & Droj, Laurențiu & Mihalciuc, Camelia Catalina, 2025. "Increasing the share of renewable energy sources (RESs) in the specific portfolio by using the taxation mechanism: Study at the level of EU states," Economic Analysis and Policy, Elsevier, vol. 85(C), pages 1534-1549.
    13. Hirth, Lion & Mühlenpfordt, Jonathan & Bulkeley, Marisa, 2018. "The ENTSO-E Transparency Platform – A review of Europe’s most ambitious electricity data platform," Applied Energy, Elsevier, vol. 225(C), pages 1054-1067.
    14. Serguey A. Maximov & Gareth P. Harrison & Daniel Friedrich, 2019. "Long Term Impact of Grid Level Energy Storage on Renewable Energy Penetration and Emissions in the Chilean Electric System," Energies, MDPI, vol. 12(6), pages 1-19, March.
    15. Ramirez, A.D. & Boero, A. & Rivela, B. & Melendres, A.M. & Espinoza, S. & Salas, D.A., 2020. "Life cycle methods to analyze the environmental sustainability of electricity generation in Ecuador: Is decarbonization the right path?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    16. Guillermo San Miguel & María Cerrato, 2020. "Life Cycle Sustainability Assessment of the Spanish Electricity: Past, Present and Future Projections," Energies, MDPI, vol. 13(8), pages 1-20, April.
    17. Simone Cornago & Yee Shee Tan & Carlo Brondi & Seeram Ramakrishna & Jonathan Sze Choong Low, 2022. "Systematic Literature Review on Dynamic Life Cycle Inventory: Towards Industry 4.0 Applications," Sustainability, MDPI, vol. 14(11), pages 1-22, May.
    18. Nils Seckinger & Peter Radgen, 2021. "Dynamic Prospective Average and Marginal GHG Emission Factors—Scenario-Based Method for the German Power System until 2050," Energies, MDPI, vol. 14(9), pages 1-22, April.
    19. Cox, Brian & Bauer, Christian & Mendoza Beltran, Angelica & van Vuuren, Detlef P. & Mutel, Christopher L., 2020. "Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios," Applied Energy, Elsevier, vol. 269(C).
    20. Pehnt, Martin, 2006. "Dynamic life cycle assessment (LCA) of renewable energy technologies," Renewable Energy, Elsevier, vol. 31(1), pages 55-71.
    21. Cárdenas, Bruno & Ibanez, Roderaid & Rouse, James & Swinfen-Styles, Lawrie & Garvey, Seamus, 2023. "The effect of a nuclear baseload in a zero-carbon electricity system: An analysis for the UK," Renewable Energy, Elsevier, vol. 205(C), pages 256-272.
    22. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    23. Bauer, Christian & Hofer, Johannes & Althaus, Hans-Jörg & Del Duce, Andrea & Simons, Andrew, 2015. "The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework," Applied Energy, Elsevier, vol. 157(C), pages 871-883.
    24. Ingrid Munné-Collado & Fabio Maria Aprà & Pol Olivella-Rosell & Roberto Villafáfila-Robles, 2019. "The Potential Role of Flexibility During Peak Hours on Greenhouse Gas Emissions: A Life Cycle Assessment of Five Targeted National Electricity Grid Mixes," Energies, MDPI, vol. 12(23), pages 1-22, November.
    25. Jože Dimnik & Jelena Topić Božič & Ante Čikić & Simon Muhič, 2024. "Impacts of High PV Penetration on Slovenia’s Electricity Grid: Energy Modeling and Life Cycle Assessment," Energies, MDPI, vol. 17(13), pages 1-17, June.
    26. Alessia Gargiulo & Maria Leonor Carvalho & Pierpaolo Girardi, 2020. "Life Cycle Assessment of Italian Electricity Scenarios to 2030," Energies, MDPI, vol. 13(15), pages 1-16, July.
    27. Neirotti, Francesco & Noussan, Michel & Simonetti, Marco, 2020. "Towards the electrification of buildings heating - Real heat pumps electricity mixes based on high resolution operational profiles," Energy, Elsevier, vol. 195(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ingrid Munné-Collado & Fabio Maria Aprà & Pol Olivella-Rosell & Roberto Villafáfila-Robles, 2019. "The Potential Role of Flexibility During Peak Hours on Greenhouse Gas Emissions: A Life Cycle Assessment of Five Targeted National Electricity Grid Mixes," Energies, MDPI, vol. 12(23), pages 1-22, November.
    2. Fleschutz, Markus & Bohlayer, Markus & Braun, Marco & Henze, Gregor & Murphy, Michael D., 2021. "The effect of price-based demand response on carbon emissions in European electricity markets: The importance of adequate carbon prices," Applied Energy, Elsevier, vol. 295(C).
    3. Simone Cornago & Yee Shee Tan & Carlo Brondi & Seeram Ramakrishna & Jonathan Sze Choong Low, 2022. "Systematic Literature Review on Dynamic Life Cycle Inventory: Towards Industry 4.0 Applications," Sustainability, MDPI, vol. 14(11), pages 1-22, May.
    4. Hamels, Sam & Himpe, Eline & Laverge, Jelle & Delghust, Marc & Van den Brande, Kjartan & Janssens, Arnold & Albrecht, Johan, 2021. "The use of primary energy factors and CO2 intensities for electricity in the European context - A systematic methodological review and critical evaluation of the contemporary literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    5. Shimada, Hideki & Honda, Tomonori & Imamura, Yuya & Gonocruz, Ruth Anne & Ozawa, Akito, 2025. "Revealing temporal and spatial variations in CO2 emission factor of electricity generation in Japan," Energy, Elsevier, vol. 326(C).
    6. Zacharopoulos, Leon & Thonemann, Nils & Dumeier, Marcel & Geldermann, Jutta, 2023. "Environmental optimization of the charge of battery electric vehicles," Applied Energy, Elsevier, vol. 329(C).
    7. Michel Noussan & Francesco Neirotti, 2020. "Cross-Country Comparison of Hourly Electricity Mixes for EV Charging Profiles," Energies, MDPI, vol. 13(10), pages 1-14, May.
    8. Anders Arvesen & Steve Völler & Christine Roxanne Hung & Volker Krey & Magnus Korpås & Anders Hammer Strømman, 2021. "Emissions of electric vehicle charging in future scenarios: The effects of time of charging," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1250-1263, October.
    9. da Costa, Vinicius Braga Ferreira & Bitencourt, Leonardo & Dias, Bruno Henriques & Soares, Tiago & de Andrade, Jorge Vleberton Bessa & Bonatto, Benedito Donizeti, 2025. "Life cycle assessment comparison of electric and internal combustion vehicles: A review on the main challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    10. Sam Hamels, 2021. "CO 2 Intensities and Primary Energy Factors in the Future European Electricity System," Energies, MDPI, vol. 14(8), pages 1-30, April.
    11. Gkousis, Spiros & Thomassen, Gwenny & Welkenhuysen, Kris & Compernolle, Tine, 2022. "Dynamic life cycle assessment of geothermal heat production from medium enthalpy hydrothermal resources," Applied Energy, Elsevier, vol. 328(C).
    12. Frapin, Marie & Roux, Charlotte & Assoumou, Edi & Peuportier, Bruno, 2022. "Modelling long-term and short-term temporal variation and uncertainty of electricity production in the life cycle assessment of buildings," Applied Energy, Elsevier, vol. 307(C).
    13. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    14. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    15. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    16. Dahlia Byles & Salman Mohagheghi, 2023. "Sustainable Power Grid Expansion: Life Cycle Assessment, Modeling Approaches, Challenges, and Opportunities," Sustainability, MDPI, vol. 15(11), pages 1-25, May.
    17. Mélanie Douziech & Romain Besseau & Raphaël Jolivet & Bianka Shoai‐Tehrani & Jean‐Yves Bourmaud & Guillaume Busato & Mathilde Gresset‐Bourgeois & Paula Pérez‐López, 2024. "Life cycle assessment of prospective trajectories: A parametric approach for tailor‐made inventories and its computational implementation," Journal of Industrial Ecology, Yale University, vol. 28(1), pages 25-40, February.
    18. Sokka, L. & Sinkko, T. & Holma, A. & Manninen, K. & Pasanen, K. & Rantala, M. & Leskinen, P., 2016. "Environmental impacts of the national renewable energy targets – A case study from Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1599-1610.
    19. Romano, Elliot & Patel, Martin K. & Hollmuller, Pierre, 2024. "Applying trade mechanisms to quantify dynamic GHG emissions of electricity consumption in an open economy - The case of Switzerland," Energy, Elsevier, vol. 311(C).
    20. Gao, Cheng-kang & Na, Hong-ming & Song, Kai-hui & Dyer, Noel & Tian, Fan & Xu, Qing-jiang & Xing, Yu-hong, 2019. "Environmental impact analysis of power generation from biomass and wind farms in different locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 307-317.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:18:p:4826-:d:1746980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.