IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8788-d1159117.html
   My bibliography  Save this article

Sustainable Power Grid Expansion: Life Cycle Assessment, Modeling Approaches, Challenges, and Opportunities

Author

Listed:
  • Dahlia Byles

    (Electrical Engineering Department, Colorado School of Mines, Golden, CO 80401, USA)

  • Salman Mohagheghi

    (Electrical Engineering Department, Colorado School of Mines, Golden, CO 80401, USA)

Abstract

Electric demand is steadily increasing, hence requiring continuous investments in modernizing, and expanding power grids worldwide. Traditionally, power system planning projects have considered minimizing the costs of capacity expansion and minimizing the amount of energy not served as the main objectives. With climate change policies enforcing the decommissioning of fossil-fuel-based generation, new clean and renewable generation technologies are being considered for power system capacity expansion projects. However, the environmental impacts of energy resources are not limited to carbon emissions and their contribution to global warming. In fact, every power generation technology can result in undesired impacts during its entire life cycle, which could negatively affect air quality, water resources, material resources, and/or human health. This paper provides an overview of how to assess the sustainability of power systems and power generation technologies based on life cycle assessment (LCA). A review of LCA, as applied to power systems and generation technologies, is presented with a discussion of general findings, challenges, and limitations. A review of the literature is then provided related to how sustainability objectives are currently incorporated in power grid design and capacity expansion models. Finally, shortcomings of the current models are discussed, along with opportunities for future research.

Suggested Citation

  • Dahlia Byles & Salman Mohagheghi, 2023. "Sustainable Power Grid Expansion: Life Cycle Assessment, Modeling Approaches, Challenges, and Opportunities," Sustainability, MDPI, vol. 15(11), pages 1-25, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8788-:d:1159117
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8788/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8788/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arvesen, Anders & Hauan, Ingrid Bjerke & Bolsøy, Bernhard Mikal & Hertwich, Edgar G., 2015. "Life cycle assessment of transport of electricity via different voltage levels: A case study for Nord-Trøndelag county in Norway," Applied Energy, Elsevier, vol. 157(C), pages 144-151.
    2. Heetae Kim & Petter Holme, 2015. "Network Theory Integrated Life Cycle Assessment for an Electric Power System," Sustainability, MDPI, vol. 7(8), pages 1-15, August.
    3. Jorge, Raquel S. & Hertwich, Edgar G., 2013. "Environmental evaluation of power transmission in Norway," Applied Energy, Elsevier, vol. 101(C), pages 513-520.
    4. Soimakallio, Sampo & Kiviluoma, Juha & Saikku, Laura, 2011. "The complexity and challenges of determining GHG (greenhouse gas) emissions from grid electricity consumption and conservation in LCA (life cycle assessment) – A methodological review," Energy, Elsevier, vol. 36(12), pages 6705-6713.
    5. Ingrid Munné-Collado & Fabio Maria Aprà & Pol Olivella-Rosell & Roberto Villafáfila-Robles, 2019. "The Potential Role of Flexibility During Peak Hours on Greenhouse Gas Emissions: A Life Cycle Assessment of Five Targeted National Electricity Grid Mixes," Energies, MDPI, vol. 12(23), pages 1-22, November.
    6. Lee, Kun-Mo & Lee, Sang-Yong & Hur, Tak, 2004. "Life cycle inventory analysis for electricity in Korea," Energy, Elsevier, vol. 29(1), pages 87-101.
    7. Turconi, Roberto & Tonini, Davide & Nielsen, Christian F.B. & Simonsen, Christian G. & Astrup, Thomas, 2014. "Environmental impacts of future low-carbon electricity systems: Detailed life cycle assessment of a Danish case study," Applied Energy, Elsevier, vol. 132(C), pages 66-73.
    8. Jones, Christopher & Gilbert, Paul & Raugei, Marco & Mander, Sarah & Leccisi, Enrica, 2017. "An approach to prospective consequential life cycle assessment and net energy analysis of distributed electricity generation," Energy Policy, Elsevier, vol. 100(C), pages 350-358.
    9. Ding, Ning & Liu, Jingru & Yang, Jianxin & Yang, Dong, 2017. "Comparative life cycle assessment of regional electricity supplies in China," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 47-59.
    10. Harrison, Gareth P. & Maclean, Edward (Ned). J. & Karamanlis, Serafeim & Ochoa, Luis F., 2010. "Life cycle assessment of the transmission network in Great Britain," Energy Policy, Elsevier, vol. 38(7), pages 3622-3631, July.
    11. Tobias Junne & Karl-Kiên Cao & Kim Kira Miskiw & Heidi Hottenroth & Tobias Naegler, 2021. "Considering Life Cycle Greenhouse Gas Emissions in Power System Expansion Planning for Europe and North Africa Using Multi-Objective Optimization," Energies, MDPI, vol. 14(5), pages 1-26, February.
    12. Garcia, Rita & Marques, Pedro & Freire, Fausto, 2014. "Life-cycle assessment of electricity in Portugal," Applied Energy, Elsevier, vol. 134(C), pages 563-572.
    13. Joe Marriott & H. Scott Matthews & Chris T. Hendrickson, 2010. "Impact of Power Generation Mix on Life Cycle Assessment and Carbon Footprint Greenhouse Gas Results," Journal of Industrial Ecology, Yale University, vol. 14(6), pages 919-928, December.
    14. Marco Raugei & Mashael Kamran & Allan Hutchinson, 2020. "A Prospective Net Energy and Environmental Life-Cycle Assessment of the UK Electricity Grid," Energies, MDPI, vol. 13(9), pages 1-28, May.
    15. Amor, Mourad Ben & Gaudreault, Caroline & Pineau, Pierre-Olivier & Samson, Réjean, 2014. "Implications of integrating electricity supply dynamics into life cycle assessment: A case study of renewable distributed generation," Renewable Energy, Elsevier, vol. 69(C), pages 410-419.
    16. Jorge, Raquel S. & Hertwich, Edgar G., 2014. "Grid infrastructure for renewable power in Europe: The environmental cost," Energy, Elsevier, vol. 69(C), pages 760-768.
    17. Vuarnoz, Didier & Jusselme, Thomas, 2018. "Temporal variations in the primary energy use and greenhouse gas emissions of electricity provided by the Swiss grid," Energy, Elsevier, vol. 161(C), pages 573-582.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arvesen, Anders & Hauan, Ingrid Bjerke & Bolsøy, Bernhard Mikal & Hertwich, Edgar G., 2015. "Life cycle assessment of transport of electricity via different voltage levels: A case study for Nord-Trøndelag county in Norway," Applied Energy, Elsevier, vol. 157(C), pages 144-151.
    2. Kim Maya Yavor & Vanessa Bach & Matthias Finkbeiner, 2021. "Resource Assessment of Renewable Energy Systems—A Review," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    3. Orfanos, Neoptolemos & Mitzelos, Dimitris & Sagani, Angeliki & Dedoussis, Vassilis, 2019. "Life-cycle environmental performance assessment of electricity generation and transmission systems in Greece," Renewable Energy, Elsevier, vol. 139(C), pages 1447-1462.
    4. Olkkonen, Ville & Hirvonen, Janne & Heljo, Juhani & Syri, Sanna, 2021. "Effectiveness of building stock sustainability measures in a low-carbon energy system: A scenario analysis for Finland until 2050," Energy, Elsevier, vol. 235(C).
    5. Descateaux, Paul & Astudillo, Miguel F. & Amor, Mourad Ben, 2016. "Assessing the life cycle environmental benefits of renewable distributed generation in a context of carbon taxes: The case of the Northeastern American market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1178-1189.
    6. Ingrid Munné-Collado & Fabio Maria Aprà & Pol Olivella-Rosell & Roberto Villafáfila-Robles, 2019. "The Potential Role of Flexibility During Peak Hours on Greenhouse Gas Emissions: A Life Cycle Assessment of Five Targeted National Electricity Grid Mixes," Energies, MDPI, vol. 12(23), pages 1-22, November.
    7. Ramirez, A.D. & Boero, A. & Rivela, B. & Melendres, A.M. & Espinoza, S. & Salas, D.A., 2020. "Life cycle methods to analyze the environmental sustainability of electricity generation in Ecuador: Is decarbonization the right path?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Simone Cornago & Yee Shee Tan & Carlo Brondi & Seeram Ramakrishna & Jonathan Sze Choong Low, 2022. "Systematic Literature Review on Dynamic Life Cycle Inventory: Towards Industry 4.0 Applications," Sustainability, MDPI, vol. 14(11), pages 1-22, May.
    9. Anders Arvesen & Steve Völler & Christine Roxanne Hung & Volker Krey & Magnus Korpås & Anders Hammer Strømman, 2021. "Emissions of electric vehicle charging in future scenarios: The effects of time of charging," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1250-1263, October.
    10. Ortega-Arriaga, P. & Babacan, O. & Nelson, J. & Gambhir, A., 2021. "Grid versus off-grid electricity access options: A review on the economic and environmental impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    11. Frapin, Marie & Roux, Charlotte & Assoumou, Edi & Peuportier, Bruno, 2022. "Modelling long-term and short-term temporal variation and uncertainty of electricity production in the life cycle assessment of buildings," Applied Energy, Elsevier, vol. 307(C).
    12. Papageorgiou, Asterios & Ashok, Archana & Hashemi Farzad, Tabassom & Sundberg, Cecilia, 2020. "Climate change impact of integrating a solar microgrid system into the Swedish electricity grid," Applied Energy, Elsevier, vol. 268(C).
    13. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Lucas, Alexandre & Neto, Rui Costa & Silva, Carla Alexandra, 2013. "Energy supply infrastructure LCA model for electric and hydrogen transportation systems," Energy, Elsevier, vol. 56(C), pages 70-80.
    15. Nicole A. Ryan & Jeremiah X. Johnson & Gregory A. Keoleian & Geoffrey M. Lewis, 2018. "Decision Support Algorithm for Evaluating Carbon Dioxide Emissions from Electricity Generation in the United States," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1318-1330, December.
    16. Besseau, Romain & Sacchi, Romain & Blanc, Isabelle & Pérez-López, Paula, 2019. "Past, present and future environmental footprint of the Danish wind turbine fleet with LCA_WIND_DK, an online interactive platform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 274-288.
    17. Marco Raugei & Alessio Peluso & Enrica Leccisi & Vasilis Fthenakis, 2020. "Life-Cycle Carbon Emissions and Energy Return on Investment for 80% Domestic Renewable Electricity with Battery Storage in California (U.S.A.)," Energies, MDPI, vol. 13(15), pages 1-22, August.
    18. Ramirez, Angel D. & Rivela, Beatriz & Boero, Andrea & Melendres, Ana M., 2019. "Lights and shadows of the environmental impacts of fossil-based electricity generation technologies: A contribution based on the Ecuadorian experience," Energy Policy, Elsevier, vol. 125(C), pages 467-477.
    19. Nils Seckinger & Peter Radgen, 2021. "Dynamic Prospective Average and Marginal GHG Emission Factors—Scenario-Based Method for the German Power System until 2050," Energies, MDPI, vol. 14(9), pages 1-22, April.
    20. Marco Raugei & Alessio Peluso & Enrica Leccisi & Vasilis Fthenakis, 2021. "Life-Cycle Carbon Emissions and Energy Implications of High Penetration of Photovoltaics and Electric Vehicles in California," Energies, MDPI, vol. 14(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8788-:d:1159117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.