IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v14y2010i6p919-928.html
   My bibliography  Save this article

Impact of Power Generation Mix on Life Cycle Assessment and Carbon Footprint Greenhouse Gas Results

Author

Listed:
  • Joe Marriott
  • H. Scott Matthews
  • Chris T. Hendrickson

Abstract

The mix of electricity consumed in any stage in the life cycle of a product, process, or industrial sector has a significant effect on the associated inventory of emissions and environmental impacts because of large differences in the power generation method used. Fossil‐fuel‐fired or nuclear‐centralized steam generators; large‐scale and small‐scale hydroelectric power; and renewable options, such as geothermal, wind, and solar power, each have a unique set of issues that can change the results of a life cycle assessment. This article shows greenhouse gas emissions estimates for electricity purchase for different scenarios using U.S. average electricity mix, state mixes, state mixes including imports, and a sector‐specific mix to show how different these results can be. We find that greenhouse gases for certain sectors and scenarios can change by more than 100%. Knowing this, practitioners should exercise caution or at least account for the uncertainty associated with mix choice.

Suggested Citation

  • Joe Marriott & H. Scott Matthews & Chris T. Hendrickson, 2010. "Impact of Power Generation Mix on Life Cycle Assessment and Carbon Footprint Greenhouse Gas Results," Journal of Industrial Ecology, Yale University, vol. 14(6), pages 919-928, December.
  • Handle: RePEc:bla:inecol:v:14:y:2010:i:6:p:919-928
    DOI: 10.1111/j.1530-9290.2010.00290.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1530-9290.2010.00290.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1530-9290.2010.00290.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dahlia Byles & Salman Mohagheghi, 2023. "Sustainable Power Grid Expansion: Life Cycle Assessment, Modeling Approaches, Challenges, and Opportunities," Sustainability, MDPI, vol. 15(11), pages 1-25, May.
    2. Descateaux, Paul & Astudillo, Miguel F. & Amor, Mourad Ben, 2016. "Assessing the life cycle environmental benefits of renewable distributed generation in a context of carbon taxes: The case of the Northeastern American market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1178-1189.
    3. Olkkonen, Ville & Hirvonen, Janne & Heljo, Juhani & Syri, Sanna, 2021. "Effectiveness of building stock sustainability measures in a low-carbon energy system: A scenario analysis for Finland until 2050," Energy, Elsevier, vol. 235(C).
    4. Daví-Arderius, Daniel & Sanin, María-Eugenia & Trujillo-Baute, Elisa, 2017. "CO2 content of electricity losses," Energy Policy, Elsevier, vol. 104(C), pages 439-445.
    5. Maria Milousi & Athanasios Pappas & Andreas P. Vouros & Giouli Mihalakakou & Manolis Souliotis & Spiros Papaefthimiou, 2022. "Evaluating the Technical and Environmental Capabilities of Geothermal Systems through Life Cycle Assessment," Energies, MDPI, vol. 15(15), pages 1-30, August.
    6. Yihsuan Wu & Jian Hua, 2022. "Investigating a Retrofit Thermal Power Plant from a Sustainable Environment Perspective—A Fuel Lifecycle Assessment Case Study," Sustainability, MDPI, vol. 14(8), pages 1-26, April.
    7. Radonjič, Gregor & Tompa, Saša, 2018. "Carbon footprint calculation in telecommunications companies – The importance and relevance of scope 3 greenhouse gases emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 361-375.
    8. Qipeng Sun & Yafang Geng & Fei Ma & Chao Wang & Bo Wang & Xiu Wang & Wenlin Wang, 2018. "Spatial–Temporal Evolution and Factor Decomposition for Ecological Pressure of Carbon Footprint in the One Belt and One Road," Sustainability, MDPI, vol. 10(9), pages 1-22, August.
    9. Amor, Mourad Ben & Gaudreault, Caroline & Pineau, Pierre-Olivier & Samson, Réjean, 2014. "Implications of integrating electricity supply dynamics into life cycle assessment: A case study of renewable distributed generation," Renewable Energy, Elsevier, vol. 69(C), pages 410-419.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:14:y:2010:i:6:p:919-928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.