IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i8p2188-d222121.html
   My bibliography  Save this article

Toxicity of Exhaust Fumes (CO, NO x ) of the Compression-Ignition (Diesel) Engine with the Use of Simulation

Author

Listed:
  • Karol Tucki

    (Department of Organization and Production Engineering, Warsaw University of Life Sciences, Nowoursynowska Street 164, 02-787 Warsaw, Poland)

  • Remigiusz Mruk

    (Department of Organization and Production Engineering, Warsaw University of Life Sciences, Nowoursynowska Street 164, 02-787 Warsaw, Poland)

  • Olga Orynycz

    (Department of Production Management, Bialystok University of Technology, Wiejska Street 45A, 15-351 Bialystok, Poland)

  • Katarzyna Botwińska

    (Department of Organization and Production Engineering, Warsaw University of Life Sciences, Nowoursynowska Street 164, 02-787 Warsaw, Poland)

  • Arkadiusz Gola

    (Faculty of Mechanical Engineering, Institute of Technological Information Systems, Lublin University of Technology, Nadbystrzycka 38 D, 20-618 Lublin, Poland)

  • Anna Bączyk

    (Department of Hydraulic Engineering, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland)

Abstract

Nowadays more and more emphasis is placed on the protection of the natural environment. Scientists notice that global warming is associated with an increase of carbon dioxide emissions, which results inter alia from the combustion of gasoline, oil, and coal. To reduce the problem of pollution from transport, the EU is introducing increasingly stringent emission standards which should correspond to sustainable conditions of the environment during the operation of motor vehicles. The emissivity value of substances, such as nitrogen oxides (NO x ), hydrocarbons (HC), carbon monoxide (CO), as well as solid particles, was determined. The aim of this paper was to examine, by means of simulation in the Scilab program, the exhaust emissions generated by the 1.3 MultiJet Fiat Panda diesel engine, and in particular, carbon monoxide and nitrogen oxides (verified on the basis of laboratory tests). The Fiat Panda passenger car was selected for the test. The fuels supplied to the tested engine were diesel and FAME (fatty acid methyl esters). The Scilab program, which simulated the diesel engine operation, was the tool for analyzing the exhaust toxicity test. The combustion of biodiesel does not necessarily mean a smaller amount of exhaust emissions, as could be concluded on the basis of information contained in the subject literature. The obtained results were compared with the currently valid EURO-6 standard, for which the limit value for CO is 0.5 g/km, and for NO x − 0.08 g/km, and it can be seen that the emission of carbon monoxide did not exceed the standards in any case examined. Unfortunately, when analyzing the total emissions of nitrogen oxides, the situation was completely the opposite and the emissions were exceeded by 20–30%.

Suggested Citation

  • Karol Tucki & Remigiusz Mruk & Olga Orynycz & Katarzyna Botwińska & Arkadiusz Gola & Anna Bączyk, 2019. "Toxicity of Exhaust Fumes (CO, NO x ) of the Compression-Ignition (Diesel) Engine with the Use of Simulation," Sustainability, MDPI, vol. 11(8), pages 1-15, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2188-:d:222121
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/8/2188/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/8/2188/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tsiakmakis, Stefanos & Fontaras, Georgios & Dornoff, Jan & Valverde, Victor & Komnos, Dimitrios & Ciuffo, Biagio & Mock, Peter & Samaras, Zissis, 2019. "From lab-to-road & vice-versa: Using a simulation-based approach for predicting real-world CO2 emissions," Energy, Elsevier, vol. 169(C), pages 1153-1165.
    2. Kaizer, Joshua S. & Heller, A. Kevin & Oberkampf, William L., 2015. "Scientific computer simulation review," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 210-218.
    3. Eliasson, Jonas & Proost, Stef, 2015. "Is sustainable transport policy sustainable?," Transport Policy, Elsevier, vol. 37(C), pages 92-100.
    4. Tsiakmakis, Stefanos & Fontaras, Georgios & Ciuffo, Biagio & Samaras, Zissis, 2017. "A simulation-based methodology for quantifying European passenger car fleet CO2 emissions," Applied Energy, Elsevier, vol. 199(C), pages 447-465.
    5. Andrés, Lidia & Padilla, Emilio, 2018. "Driving factors of GHG emissions in the EU transport activity," Transport Policy, Elsevier, vol. 61(C), pages 60-74.
    6. Pavlovic, J. & Ciuffo, B. & Fontaras, G. & Valverde, V. & Marotta, A., 2018. "How much difference in type-approval CO2 emissions from passenger cars in Europe can be expected from changing to the new test procedure (NEDC vs. WLTP)?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 136-147.
    7. Ciuffo, B. & Fontaras, G., 2017. "Models and scientific tools for regulatory purposes: The case of CO2 emissions from light duty vehicles in Europe," Energy Policy, Elsevier, vol. 109(C), pages 76-81.
    8. Pavlovic, Jelica & Marotta, Alessandro & Ciuffo, Biagio, 2016. "CO2 emissions and energy demands of vehicles tested under the NEDC and the new WLTP type approval test procedures," Applied Energy, Elsevier, vol. 177(C), pages 661-670.
    9. Ştefan Cristian Gherghina & Mihaela Onofrei & Georgeta Vintilă & Daniel Ştefan Armeanu, 2018. "Empirical Evidence from EU-28 Countries on Resilient Transport Infrastructure Systems and Sustainable Economic Growth," Sustainability, MDPI, vol. 10(8), pages 1-34, August.
    10. Meckling, Jonas & Nahm, Jonas, 2019. "The politics of technology bans: Industrial policy competition and green goals for the auto industry," Energy Policy, Elsevier, vol. 126(C), pages 470-479.
    11. Hooftman, Nils & Messagie, Maarten & Van Mierlo, Joeri & Coosemans, Thierry, 2018. "A review of the European passenger car regulations – Real driving emissions vs local air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 1-21.
    12. Chen, Hao & Su, Xin & Li, Junhui & Zhong, Xianglin, 2019. "Effects of gasoline and polyoxymethylene dimethyl ethers blending in diesel on the combustion and emission of a common rail diesel engine," Energy, Elsevier, vol. 171(C), pages 981-999.
    13. Jiyeon Jung & Yoonmo Koo, 2018. "Analyzing the Effects of Car Sharing Services on the Reduction of Greenhouse Gas (GHG) Emissions," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    14. Emodi, Nnaemeka Vincent & Chaiechi, Taha & Alam Beg, A.B.M. Rabiul, 2019. "Are emission reduction policies effective under climate change conditions? A backcasting and exploratory scenario approach using the LEAP-OSeMOSYS Model," Applied Energy, Elsevier, vol. 236(C), pages 1183-1217.
    15. Tsokolis, D. & Tsiakmakis, S. & Dimaratos, A. & Fontaras, G. & Pistikopoulos, P. & Ciuffo, B. & Samaras, Z., 2016. "Fuel consumption and CO2 emissions of passenger cars over the New Worldwide Harmonized Test Protocol," Applied Energy, Elsevier, vol. 179(C), pages 1152-1165.
    16. Saidi, Samir & Shahbaz, Muhammad & Akhtar, Pervaiz, 2018. "The long-run relationships between transport energy consumption, transport infrastructure, and economic growth in MENA countries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 78-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natallia Pashkevich & Darek Haftor & Mikael Karlsson & Soumitra Chowdhury, 2019. "Sustainability through the Digitalization of Industrial Machines: Complementary Factors of Fuel Consumption and Productivity for Forklifts with Sensors," Sustainability, MDPI, vol. 11(23), pages 1-21, November.
    2. Dariusz Mikielewicz & Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski, 2019. "Gas Turbine Cycle with External Combustion Chamber for Prosumer and Distributed Energy Systems," Energies, MDPI, vol. 12(18), pages 1-19, September.
    3. Wojciech Gis & Maciej Gis & Jacek Pielecha & Kinga Skobiej, 2021. "Alternative Exhaust Emission Factors from Vehicles in On-Road Driving Tests," Energies, MDPI, vol. 14(12), pages 1-23, June.
    4. Karol Tucki & Remigiusz Mruk & Olga Orynycz & Andrzej Wasiak & Antoni Świć, 2019. "Thermodynamic Fundamentals for Fuel Production Management," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    5. Karol Tucki & Olga Orynycz & Antoni Świć & Mateusz Mitoraj-Wojtanek, 2019. "The Development of Electromobility in Poland and EU States as a Tool for Management of CO 2 Emissions," Energies, MDPI, vol. 12(15), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Jingeun & Cha, Junepyo, 2022. "Development of prediction methodology for CO2 emissions and fuel economy of light duty vehicle," Energy, Elsevier, vol. 244(PB).
    2. Karol Tucki & Remigiusz Mruk & Olga Orynycz & Andrzej Wasiak & Katarzyna Botwińska & Arkadiusz Gola, 2019. "Simulation of the Operation of a Spark Ignition Engine Fueled with Various Biofuels and Its Contribution to Technology Management," Sustainability, MDPI, vol. 11(10), pages 1-17, May.
    3. Karol Tucki & Andrzej Wasiak & Olga Orynycz & Remigiusz Mruk, 2020. "Computer Simulation as a Tool for Managing the Technical Development of Methods for Diagnosing the Technical Condition of a Vehicle," Energies, MDPI, vol. 13(11), pages 1-24, June.
    4. Pavlovic, J. & Ciuffo, B. & Fontaras, G. & Valverde, V. & Marotta, A., 2018. "How much difference in type-approval CO2 emissions from passenger cars in Europe can be expected from changing to the new test procedure (NEDC vs. WLTP)?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 136-147.
    5. Xinglong Liu & Fuquan Zhao & Han Hao & Kangda Chen & Zongwei Liu & Hassan Babiker & Amer Ahmad Amer, 2020. "From NEDC to WLTP: Effect on the Energy Consumption, NEV Credits, and Subsidies Policies of PHEV in the Chinese Market," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    6. Kangda Chen & Fuquan Zhao & Xinglong Liu & Han Hao & Zongwei Liu, 2021. "Impacts of the New Worldwide Light-Duty Test Procedure on Technology Effectiveness and China’s Passenger Vehicle Fuel Consumption Regulations," IJERPH, MDPI, vol. 18(6), pages 1-20, March.
    7. Mogno, Caterina & Fontaras, Georgios & Arcidiacono, Vincenzo & Komnos, Dimitrios & Pavlovic, Jelica & Ciuffo, Biagio & Makridis, Michail & Valverde, Victor, 2022. "The application of the CO2MPAS model for vehicle CO2 emissions estimation over real traffic conditions," Transport Policy, Elsevier, vol. 124(C), pages 152-159.
    8. Fontaras, Georgios & Valverde, Víctor & Arcidiacono, Vincenzo & Tsiakmakis, Stefanos & Anagnostopoulos, Konstantinos & Komnos, Dimitrios & Pavlovic, Jelica & Ciuffo, Biagio, 2018. "The development and validation of a vehicle simulator for the introduction of Worldwide Harmonized test protocol in the European light duty vehicle CO2 certification process," Applied Energy, Elsevier, vol. 226(C), pages 784-796.
    9. Timothy Bodisco & Ali Zare, 2019. "Practicalities and Driving Dynamics of a Real Driving Emissions (RDE) Euro 6 Regulation Homologation Test," Energies, MDPI, vol. 12(12), pages 1-19, June.
    10. Tsiakmakis, Stefanos & Fontaras, Georgios & Dornoff, Jan & Valverde, Victor & Komnos, Dimitrios & Ciuffo, Biagio & Mock, Peter & Samaras, Zissis, 2019. "From lab-to-road & vice-versa: Using a simulation-based approach for predicting real-world CO2 emissions," Energy, Elsevier, vol. 169(C), pages 1153-1165.
    11. He, Liqiang & Hu, Jingnan & Zhang, Shaojun & Wu, Ye & Zhu, Rencheng & Zu, Lei & Bao, Xiaofeng & Lai, Yitu & Su, Sheng, 2018. "The impact from the direct injection and multi-port fuel injection technologies for gasoline vehicles on solid particle number and black carbon emissions," Applied Energy, Elsevier, vol. 226(C), pages 819-826.
    12. Triantafyllopoulos, Georgios & Kontses, Anastasios & Tsokolis, Dimitrios & Ntziachristos, Leonidas & Samaras, Zissis, 2017. "Potential of energy efficiency technologies in reducing vehicle consumption under type approval and real world conditions," Energy, Elsevier, vol. 140(P1), pages 365-373.
    13. S. M. Ashrafur Rahman & I. M. Rizwanul Fattah & Hwai Chyuan Ong & Fajle Rabbi Ashik & Mohammad Mahmudul Hassan & Md Tausif Murshed & Md Ashraful Imran & Md Hamidur Rahman & Md Akibur Rahman & Mohammad, 2021. "State-of-the-Art of Establishing Test Procedures for Real Driving Gaseous Emissions from Light- and Heavy-Duty Vehicles," Energies, MDPI, vol. 14(14), pages 1-32, July.
    14. Tsiakmakis, Stefanos & Fontaras, Georgios & Ciuffo, Biagio & Samaras, Zissis, 2017. "A simulation-based methodology for quantifying European passenger car fleet CO2 emissions," Applied Energy, Elsevier, vol. 199(C), pages 447-465.
    15. Pirjola, Liisa & Kuuluvainen, Heino & Timonen, Hilkka & Saarikoski, Sanna & Teinilä, Kimmo & Salo, Laura & Datta, Arindam & Simonen, Pauli & Karjalainen, Panu & Kulmala, Kari & Rönkkö, Topi, 2019. "Potential of renewable fuel to reduce diesel exhaust particle emissions," Applied Energy, Elsevier, vol. 254(C).
    16. Karol Tucki & Olga Orynycz & Antoni Świć & Mateusz Mitoraj-Wojtanek, 2019. "The Development of Electromobility in Poland and EU States as a Tool for Management of CO 2 Emissions," Energies, MDPI, vol. 12(15), pages 1-22, July.
    17. Stefan Tabacu & Dragos Popa, 2023. "Backward-Facing Analysis for the Preliminary Estimation of the Vehicle Fuel Consumption," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    18. Buberger, Johannes & Kersten, Anton & Kuder, Manuel & Eckerle, Richard & Weyh, Thomas & Thiringer, Torbjörn, 2022. "Total CO2-equivalent life-cycle emissions from commercially available passenger cars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    19. Salvo, Orlando de & Vaz de Almeida, Flávio G., 2019. "Influence of technologies on energy efficiency results of official Brazilian tests of vehicle energy consumption," Applied Energy, Elsevier, vol. 241(C), pages 98-112.
    20. Davidmac O. Ekeocha & Jonathan E. Ogbuabor & Anthony Orji, 2022. "Public infrastructural development and economic performance in Africa: a new evidence from panel data analysis," Economic Change and Restructuring, Springer, vol. 55(2), pages 931-950, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2188-:d:222121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.