IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v98y2012icp79-91.html
   My bibliography  Save this article

Analysis of different exhaust gas recirculation architectures for passenger car Diesel engines

Author

Listed:
  • Millo, Federico
  • Giacominetto, Paolo Ferrero
  • Bernardi, Marco Gianoglio

Abstract

Different Exhaust Gas Recirculation (EGR) system architectures have been evaluated by means of both experimental tests and numerical simulation; in addition to the experimental tests, a one-dimensional fluid-dynamic engine model has been built in order to assess the potential of a Dual Loop (DL) EGR system – a combination of Short Route (SR) and Long Route (LR) EGR systems. Substantial reductions of the NOx emissions have been achieved using the LR EGR layout both under steady state and transient operating conditions: a reduction of up to 15% over the first 60s of the Extra Urban Driving Cycle (EUDC) was obtained with the LR layout. An optimal combination of LR and SR has led to a further reduction of 5% of the nitrogen oxide emissions, due to a faster response of the EGR system during transients. Finally some fundamental knowledge that can be used to control the EGR flow rate more accurately has been gathered, by means of the numerical simulation, especially for the Dual Loop EGR system layout.

Suggested Citation

  • Millo, Federico & Giacominetto, Paolo Ferrero & Bernardi, Marco Gianoglio, 2012. "Analysis of different exhaust gas recirculation architectures for passenger car Diesel engines," Applied Energy, Elsevier, vol. 98(C), pages 79-91.
  • Handle: RePEc:eee:appene:v:98:y:2012:i:c:p:79-91
    DOI: 10.1016/j.apenergy.2012.02.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912001833
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.02.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:98:y:2012:i:c:p:79-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.