IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7541-d940928.html
   My bibliography  Save this article

Considerations for Achieving Equivalence between Hub- and Roller-Type Dynamometers for Vehicle Exhaust Emissions

Author

Listed:
  • Christian Engström

    (Rototest Europe, SE-144 40 Rönninge, Sweden)

  • Per Öberg

    (Rototest Europe, SE-144 40 Rönninge, Sweden)

  • Georgios Fontaras

    (European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy)

  • Barouch Giechaskiel

    (European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy)

Abstract

Emissions from vehicles can be measured on the road or in laboratories using dynamometers that simulate the forces that a vehicle is subject to while driving on the road. In the light-duty vehicle regulations, only roller-type dynamometers are allowed. For hub-type dynamometers, due to the direct connection of the dynamometers to the wheel hubs, additional parameters that are used are rotational mass, dynamic wheel radius, and the tire force–slip relationship. Following up on an experimental study which showed that equivalent emission results can be achieved between roller- and hub-type dynamometers, this work presents and evaluates methods to determine parameters used by a hub-type dynamometer for mimicking roller-type dynamometer behavior. It also discusses methods to determine the parameters to simulate specific road conditions or when using only a hub-type dynamometer. The results show that using a constant dynamic radius for each wheel and a linear tire force–slip relationship is sufficient for emission measurement because typical errors in these parameters are practically negligible. A typical error in rotational mass results in a minor error in the determined forces during coast down, but the typical accuracy of this parameter is in parity with the difference allowed in the regulation. The final conclusion is that using the information already stated in the certificate of conformity (CoC) of the vehicle (for the coast down), and reasonably set parameters for wheel dynamic radius and the tire slip–force relationship, hub-type dynamometers should yield equivalent results to roller-type dynamometers.

Suggested Citation

  • Christian Engström & Per Öberg & Georgios Fontaras & Barouch Giechaskiel, 2022. "Considerations for Achieving Equivalence between Hub- and Roller-Type Dynamometers for Vehicle Exhaust Emissions," Energies, MDPI, vol. 15(20), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7541-:d:940928
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7541/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7541/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barouch Giechaskiel & Fabrizio Forloni & Marcos Otura & Christian Engström & Per Öberg, 2022. "Experimental Comparison of Hub- and Roller-Type Chassis Dynamometers for Vehicle Exhaust Emissions," Energies, MDPI, vol. 15(7), pages 1-15, March.
    2. Barouch Giechaskiel & Simone Casadei & Tommaso Rossi & Fabrizio Forloni & Andrea Di Domenico, 2021. "Measurements of the Emissions of a “Golden” Vehicle at Seven Laboratories with Portable Emission Measurement Systems (PEMS)," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    3. Barouch Giechaskiel & Pierre Bonnel & Adolfo Perujo & Panagiota Dilara, 2019. "Solid Particle Number (SPN) Portable Emissions Measurement Systems (PEMS) in the European Legislation: A Review," IJERPH, MDPI, vol. 16(23), pages 1-23, November.
    4. Charyung Kim & Hyunwoo Lee & Yongsung Park & Cha-Lee Myung & Simsoo Park, 2016. "Study on the Criteria for the Determination of the Road Load Correlation for Automobiles and an Analysis of Key Factors," Energies, MDPI, vol. 9(8), pages 1-17, July.
    5. Tsiakmakis, Stefanos & Fontaras, Georgios & Ciuffo, Biagio & Samaras, Zissis, 2017. "A simulation-based methodology for quantifying European passenger car fleet CO2 emissions," Applied Energy, Elsevier, vol. 199(C), pages 447-465.
    6. Pablo Fernández-Yáñez & José A. Soriano & Carmen Mata & Octavio Armas & Benjamín Pla & Vicente Bermúdez, 2021. "Simulation of Optimal Driving for Minimization of Fuel Consumption or NOx Emissions in a Diesel Vehicle," Energies, MDPI, vol. 14(17), pages 1-15, September.
    7. Louis Filipozzi & Francis Assadian & Ming Kuang & Rajit Johri & Jose Velazquez Alcantar, 2021. "Estimation of Tire Normal Forces including Suspension Dynamics," Energies, MDPI, vol. 14(9), pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barouch Giechaskiel & Tobias Jakobsson & Hua Lu Karlsson & M. Yusuf Khan & Linus Kronlund & Yoshinori Otsuki & Jürgen Bredenbeck & Stefan Handler-Matejka, 2022. "Assessment of On-Board and Laboratory Gas Measurement Systems for Future Heavy-Duty Emissions Regulations," IJERPH, MDPI, vol. 19(10), pages 1-16, May.
    2. Xinglong Liu & Fuquan Zhao & Han Hao & Kangda Chen & Zongwei Liu & Hassan Babiker & Amer Ahmad Amer, 2020. "From NEDC to WLTP: Effect on the Energy Consumption, NEV Credits, and Subsidies Policies of PHEV in the Chinese Market," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    3. Kangda Chen & Fuquan Zhao & Xinglong Liu & Han Hao & Zongwei Liu, 2021. "Impacts of the New Worldwide Light-Duty Test Procedure on Technology Effectiveness and China’s Passenger Vehicle Fuel Consumption Regulations," IJERPH, MDPI, vol. 18(6), pages 1-20, March.
    4. Wojciech Adamski & Krzysztof Brzozowski & Jacek Nowakowski & Tomasz Praszkiewicz & Tomasz Knefel, 2021. "Excess Fuel Consumption Due to Selection of a Lower Than Optimal Gear—Case Study Based on Data Obtained in Real Traffic Conditions," Energies, MDPI, vol. 14(23), pages 1-15, November.
    5. Song, Jingeun & Cha, Junepyo, 2022. "Development of prediction methodology for CO2 emissions and fuel economy of light duty vehicle," Energy, Elsevier, vol. 244(PB).
    6. Salvo, Orlando de & Vaz de Almeida, Flávio G., 2019. "Influence of technologies on energy efficiency results of official Brazilian tests of vehicle energy consumption," Applied Energy, Elsevier, vol. 241(C), pages 98-112.
    7. Francis F. Assadian, 2022. "Advanced Control and Estimation Concepts and New Hardware Topologies for Future Mobility," Energies, MDPI, vol. 15(4), pages 1-3, February.
    8. Hooftman, Nils & Messagie, Maarten & Van Mierlo, Joeri & Coosemans, Thierry, 2018. "A review of the European passenger car regulations – Real driving emissions vs local air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 1-21.
    9. Mogno, Caterina & Fontaras, Georgios & Arcidiacono, Vincenzo & Komnos, Dimitrios & Pavlovic, Jelica & Ciuffo, Biagio & Makridis, Michail & Valverde, Victor, 2022. "The application of the CO2MPAS model for vehicle CO2 emissions estimation over real traffic conditions," Transport Policy, Elsevier, vol. 124(C), pages 152-159.
    10. Antti Lajunen & Klaus Kivekäs & Jari Vepsäläinen & Kari Tammi, 2020. "Influence of Increasing Electrification of Passenger Vehicle Fleet on Carbon Dioxide Emissions in Finland," Sustainability, MDPI, vol. 12(12), pages 1-13, June.
    11. Jerzy Jackowski & Marcin Żmuda & Marcin Wieczorek & Andrzej Zuska, 2021. "Quasi-Static Research of ATV/UTV Non-Pneumatic Tires," Energies, MDPI, vol. 14(20), pages 1-12, October.
    12. Fontaras, Georgios & Valverde, Víctor & Arcidiacono, Vincenzo & Tsiakmakis, Stefanos & Anagnostopoulos, Konstantinos & Komnos, Dimitrios & Pavlovic, Jelica & Ciuffo, Biagio, 2018. "The development and validation of a vehicle simulator for the introduction of Worldwide Harmonized test protocol in the European light duty vehicle CO2 certification process," Applied Energy, Elsevier, vol. 226(C), pages 784-796.
    13. Barouch Giechaskiel & Tero Lähde & Sawan Gandi & Stefan Keller & Philipp Kreutziger & Athanasios Mamakos, 2020. "Assessment of 10-nm Particle Number (PN) Portable Emissions Measurement Systems (PEMS) for Future Regulations," IJERPH, MDPI, vol. 17(11), pages 1-16, May.
    14. Barouch Giechaskiel & Fabrizio Forloni & Massimo Carriero & Gianmarco Baldini & Paolo Castellano & Robin Vermeulen & Dimitrios Kontses & Pavlos Fragkiadoulakis & Zissis Samaras & Georgios Fontaras, 2022. "Effect of Tampering on On-Road and Off-Road Diesel Vehicle Emissions," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    15. Victor Valverde & Yosuke Kondo & Yoshinori Otsuki & Torsten Krenz & Anastasios Melas & Ricardo Suarez-Bertoa & Barouch Giechaskiel, 2023. "Measurement of Gaseous Exhaust Emissions of Light-Duty Vehicles in Preparation for Euro 7: A Comparison of Portable and Laboratory Instrumentation," Energies, MDPI, vol. 16(6), pages 1-20, March.
    16. Jacek Pielecha & Kinga Skobiej & Maciej Gis & Wojciech Gis, 2022. "Particle Number Emission from Vehicles of Various Drives in the RDE Tests," Energies, MDPI, vol. 15(17), pages 1-20, September.
    17. Tsiakmakis, Stefanos & Fontaras, Georgios & Dornoff, Jan & Valverde, Victor & Komnos, Dimitrios & Ciuffo, Biagio & Mock, Peter & Samaras, Zissis, 2019. "From lab-to-road & vice-versa: Using a simulation-based approach for predicting real-world CO2 emissions," Energy, Elsevier, vol. 169(C), pages 1153-1165.
    18. Dimitrios Komnos & Stijn Broekaert & Theodoros Grigoratos & Leonidas Ntziachristos & Georgios Fontaras, 2021. "In Use Determination of Aerodynamic and Rolling Resistances of Heavy-Duty Vehicles," Sustainability, MDPI, vol. 13(2), pages 1-22, January.
    19. Barouch Giechaskiel & Victor Valverde & Anastasios Melas & Michaël Clairotte & Pierre Bonnel & Panagiota Dilara, 2024. "Comparison of the Real-Driving Emissions (RDE) of a Gasoline Direct Injection (GDI) Vehicle at Different Routes in Europe," Energies, MDPI, vol. 17(6), pages 1-19, March.
    20. Gil-Sayas, Susana & Komnos, Dimitrios & Lodi, Chiara & Currò, Davide & Serra, Simone & Broatch, Alberto & Fontaras, Georgios, 2022. "Analysing the potential of a simulation-based method for the assessment of CO2 savings from eco-innovative technologies in light-duty vehicles," Energy, Elsevier, vol. 245(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7541-:d:940928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.