IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2378-d541417.html
   My bibliography  Save this article

Estimation of Tire Normal Forces including Suspension Dynamics

Author

Listed:
  • Louis Filipozzi

    (Department of Mechanical and Aerospace Engineering, University of California, Davis, CA 95616, USA)

  • Francis Assadian

    (Department of Mechanical and Aerospace Engineering, University of California, Davis, CA 95616, USA)

  • Ming Kuang

    (Advanced Research and Engineering, Ford Motor Company, Dearborn, MI 48126, USA)

  • Rajit Johri

    (Advanced Research and Engineering, Ford Motor Company, Dearborn, MI 48126, USA)

  • Jose Velazquez Alcantar

    (Advanced Research and Engineering, Ford Motor Company, Dearborn, MI 48126, USA)

Abstract

Tire normal forces are difficult to measure, but information on the vehicle normal force can be used in many automotive engineering applications, e.g., rollover detection and vehicle and wheel stability. Previous papers use algebraic equations to estimate the tire normal force. In this article, the estimation of tire normal force is formulated as an input estimation problem. Two observers are proposed to solve this problem by using a quarter-car suspension model. First, the Youla Controller Output Observer framework is presented. It converts the estimation problem into a control problem and produces a Youla parameterized controller as observer. Second, a Kalman filter approach is taken and the input estimation problem is addressed with an Unbiased Minimum Variance Filter. Both methods use accelerometer and suspension deflection sensors to determine the vehicle normal force. The design of the observers is validated in simulation and a sensitivity analysis is performed to evaluate their robustness.

Suggested Citation

  • Louis Filipozzi & Francis Assadian & Ming Kuang & Rajit Johri & Jose Velazquez Alcantar, 2021. "Estimation of Tire Normal Forces including Suspension Dynamics," Energies, MDPI, vol. 14(9), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2378-:d:541417
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2378/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2378/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jerzy Jackowski & Marcin Żmuda & Marcin Wieczorek & Andrzej Zuska, 2021. "Quasi-Static Research of ATV/UTV Non-Pneumatic Tires," Energies, MDPI, vol. 14(20), pages 1-12, October.
    2. Francis F. Assadian, 2022. "Advanced Control and Estimation Concepts and New Hardware Topologies for Future Mobility," Energies, MDPI, vol. 15(4), pages 1-3, February.
    3. Christian Engström & Per Öberg & Georgios Fontaras & Barouch Giechaskiel, 2022. "Considerations for Achieving Equivalence between Hub- and Roller-Type Dynamometers for Vehicle Exhaust Emissions," Energies, MDPI, vol. 15(20), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2378-:d:541417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.