IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4245-d399919.html
   My bibliography  Save this article

Comparative Evaluation of the Effect of Vehicle Parameters on Fuel Consumption under NEDC and WLTP

Author

Listed:
  • Hyeonjik Lee

    (Department of Mechanical Design Engineering, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, Korea)

  • Kihyung Lee

    (Department of Mechanical Design Engineering, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, Korea)

Abstract

Higher speeds, faster acceleration and longer duration need a more realistic driving cycle. As a result, a new test procedure that reflects real-world driving conditions has been applied since 2017, and the previous development environment optimized for NEDC has also changed. In this study, several factors and technologies relating to fuel consumption, such as vehicle weight, tire rolling resistance, drag of aerodynamic, stop–start, and 48 V mild hybrid system, are evaluated as per the new worldwide harmonized light vehicles test procedure (WLTP) and compared with that of the previous European driving cycle (NEDC). The impact of the vehicle weight is increased in case of the WLTP due to faster acceleration compared to that under NEDC. The influence of aerodynamic force is very important as the average and maximum speed are increased. Meanwhile, the impact of idle stop–start technology is lower compared to that under NEDC due to the reduction in idle operation time. The 48-V mild hybrid system is still expected to play a role as a powerful fuel consumption reduction technology under new WLTP by applying energy regeneration, minor torque assist, and extended idle stop–start.

Suggested Citation

  • Hyeonjik Lee & Kihyung Lee, 2020. "Comparative Evaluation of the Effect of Vehicle Parameters on Fuel Consumption under NEDC and WLTP," Energies, MDPI, vol. 13(16), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4245-:d:399919
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4245/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4245/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pavlovic, J. & Ciuffo, B. & Fontaras, G. & Valverde, V. & Marotta, A., 2018. "How much difference in type-approval CO2 emissions from passenger cars in Europe can be expected from changing to the new test procedure (NEDC vs. WLTP)?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 136-147.
    2. Pavlovic, Jelica & Marotta, Alessandro & Ciuffo, Biagio, 2016. "CO2 emissions and energy demands of vehicles tested under the NEDC and the new WLTP type approval test procedures," Applied Energy, Elsevier, vol. 177(C), pages 661-670.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Chindamo & Marco Gadola & Emanuele Bonera & Paolo Magri, 2021. "Sensitivity of Racing Tire Sliding Energy to Major Setup Changes: An Estimate Based on Standard Sensors," Energies, MDPI, vol. 14(16), pages 1-14, August.
    2. Zvonimir Dabčević & Branimir Škugor & Jakov Topić & Joško Deur, 2022. "Synthesis of Driving Cycles Based on Low-Sampling-Rate Vehicle-Tracking Data and Markov Chain Methodology," Energies, MDPI, vol. 15(11), pages 1-21, June.
    3. Barouch Giechaskiel & Dimitrios Komnos & Georgios Fontaras, 2021. "Impacts of Extreme Ambient Temperatures and Road Gradient on Energy Consumption and CO 2 Emissions of a Euro 6d-Temp Gasoline Vehicle," Energies, MDPI, vol. 14(19), pages 1-20, September.
    4. Jakov Topić & Branimir Škugor & Joško Deur, 2021. "Synthesis and Feature Selection-Supported Validation of Multidimensional Driving Cycles," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    5. Maksymilian Mądziel, 2023. "Vehicle Emission Models and Traffic Simulators: A Review," Energies, MDPI, vol. 16(9), pages 1-31, May.
    6. Maksymilian Mądziel & Tiziana Campisi & Artur Jaworski & Giovanni Tesoriere, 2021. "The Development of Strategies to Reduce Exhaust Emissions from Passenger Cars in Rzeszow City—Poland. A Preliminary Assessment of the Results Produced by the Increase of E-Fleet," Energies, MDPI, vol. 14(4), pages 1-21, February.
    7. Sun, Bin & Zhang, Qijun & Wei, Ning & Jia, Zhenyu & Li, Chunming & Mao, Hongjun, 2022. "The energy flow of moving vehicles for different traffic states in the intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    8. Danijel Pavković & Mihael Cipek & Filip Plavac & Juraj Karlušić & Matija Krznar, 2022. "Internal Combustion Engine Starting and Torque Boosting Control System Design with Vibration Active Damping Features for a P0 Mild Hybrid Vehicle Configuration," Energies, MDPI, vol. 15(4), pages 1-24, February.
    9. Hyung Jun Kim & Sang Hyun Lee & Sang Il Kwon & Sangki Park & Jonghak Lee & Ji Hoon Keel & Jong Tae Lee & Suhan Park, 2020. "Investigation of the Emission Characteristics of Light-Duty Diesel Vehicles in Korea Based on EURO-VI Standards According to Type of After-Treatment System," Energies, MDPI, vol. 13(18), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinglong Liu & Fuquan Zhao & Han Hao & Kangda Chen & Zongwei Liu & Hassan Babiker & Amer Ahmad Amer, 2020. "From NEDC to WLTP: Effect on the Energy Consumption, NEV Credits, and Subsidies Policies of PHEV in the Chinese Market," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    2. Stefan Tabacu & Dragos Popa, 2023. "Backward-Facing Analysis for the Preliminary Estimation of the Vehicle Fuel Consumption," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    3. Dolatabadi, N. & Forder, M. & Morris, N. & Rahmani, R. & Rahnejat, H. & Howell-Smith, S., 2020. "Influence of advanced cylinder coatings on vehicular fuel economy and emissions in piston compression ring conjunction," Applied Energy, Elsevier, vol. 259(C).
    4. Fan, Pengfei & Yin, Hang & Lu, Hongyu & Wu, Yizheng & Zhai, Zhiqiang & Yu, Lei & Song, Guohua, 2023. "Which factor contributes more to the fuel consumption gap between in-laboratory vs. real-world driving conditions? An independent component analysis," Energy Policy, Elsevier, vol. 182(C).
    5. Arminda Almeida & Nuno Sousa & João Coutinho-Rodrigues, 2019. "Quest for Sustainability: Life-Cycle Emissions Assessment of Electric Vehicles Considering Newer Li-Ion Batteries," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    6. Kangda Chen & Fuquan Zhao & Xinglong Liu & Han Hao & Zongwei Liu, 2021. "Impacts of the New Worldwide Light-Duty Test Procedure on Technology Effectiveness and China’s Passenger Vehicle Fuel Consumption Regulations," IJERPH, MDPI, vol. 18(6), pages 1-20, March.
    7. Karol Tucki & Olga Orynycz & Andrzej Wasiak & Antoni Świć & Remigiusz Mruk & Katarzyna Botwińska, 2020. "Estimation of Carbon Dioxide Emissions from a Diesel Engine Powered by Lignocellulose Derived Fuel for Better Management of Fuel Production," Energies, MDPI, vol. 13(3), pages 1-29, January.
    8. Timothy Bodisco & Ali Zare, 2019. "Practicalities and Driving Dynamics of a Real Driving Emissions (RDE) Euro 6 Regulation Homologation Test," Energies, MDPI, vol. 12(12), pages 1-19, June.
    9. Karol Tucki & Andrzej Wasiak & Olga Orynycz & Remigiusz Mruk, 2020. "Computer Simulation as a Tool for Managing the Technical Development of Methods for Diagnosing the Technical Condition of a Vehicle," Energies, MDPI, vol. 13(11), pages 1-24, June.
    10. Yuan Qiao & Yizhou Song & Kaisheng Huang, 2019. "A Novel Control Algorithm Design for Hybrid Electric Vehicles Considering Energy Consumption and Emission Performance," Energies, MDPI, vol. 12(14), pages 1-28, July.
    11. Barouch Giechaskiel & Simone Casadei & Tommaso Rossi & Fabrizio Forloni & Andrea Di Domenico, 2021. "Measurements of the Emissions of a “Golden” Vehicle at Seven Laboratories with Portable Emission Measurement Systems (PEMS)," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    12. Karol Tucki & Remigiusz Mruk & Olga Orynycz & Katarzyna Botwińska & Arkadiusz Gola & Anna Bączyk, 2019. "Toxicity of Exhaust Fumes (CO, NO x ) of the Compression-Ignition (Diesel) Engine with the Use of Simulation," Sustainability, MDPI, vol. 11(8), pages 1-15, April.
    13. Baek, Seungju & Lee, Hyeonjik & Lee, Kihyung, 2021. "Fuel efficiency and exhaust characteristics of turbocharged diesel engine equipped with an electric supercharger," Energy, Elsevier, vol. 214(C).
    14. Michael Bohm & Josef Stetina & David Svida, 2022. "Exhaust Gas Temperature Pulsations of a Gasoline Engine and Its Stabilization Using Thermal Energy Storage System to Reduce Emissions," Energies, MDPI, vol. 15(7), pages 1-16, March.
    15. José I. Huertas & Michael Giraldo & Luis F. Quirama & Jenny Díaz, 2018. "Driving Cycles Based on Fuel Consumption," Energies, MDPI, vol. 11(11), pages 1-13, November.
    16. Karol Tucki & Remigiusz Mruk & Olga Orynycz & Andrzej Wasiak & Katarzyna Botwińska & Arkadiusz Gola, 2019. "Simulation of the Operation of a Spark Ignition Engine Fueled with Various Biofuels and Its Contribution to Technology Management," Sustainability, MDPI, vol. 11(10), pages 1-17, May.
    17. Salvo, Orlando de & Vaz de Almeida, Flávio G., 2019. "Influence of technologies on energy efficiency results of official Brazilian tests of vehicle energy consumption," Applied Energy, Elsevier, vol. 241(C), pages 98-112.
    18. Claudio Cubito & Federico Millo & Giulio Boccardo & Giuseppe Di Pierro & Biagio Ciuffo & Georgios Fontaras & Simone Serra & Marcos Otura Garcia & Germana Trentadue, 2017. "Impact of Different Driving Cycles and Operating Conditions on CO 2 Emissions and Energy Management Strategies of a Euro-6 Hybrid Electric Vehicle," Energies, MDPI, vol. 10(10), pages 1-18, October.
    19. Zongjun Yin & Xuegang Ma & Chunying Zhang & Rong Su & Qingqing Wang, 2023. "A Logic Threshold Control Strategy to Improve the Regenerative Braking Energy Recovery of Electric Vehicles," Sustainability, MDPI, vol. 15(24), pages 1-33, December.
    20. Josef Stetina & Michael Bohm & Michal Brezina, 2021. "Small Cogeneration Unit with Heat and Electricity Storage," Energies, MDPI, vol. 14(8), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4245-:d:399919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.