IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p4704-d541579.html
   My bibliography  Save this article

Synthesis and Feature Selection-Supported Validation of Multidimensional Driving Cycles

Author

Listed:
  • Jakov Topić

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10002 Zagreb, Croatia)

  • Branimir Škugor

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10002 Zagreb, Croatia)

  • Joško Deur

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10002 Zagreb, Croatia)

Abstract

This paper presents the synthesis and validation of multidimensional driving cycles represented by vehicle velocity, vehicle acceleration, and road slope profiles. For this purpose, a rich set of city bus driving cycles has been recorded. First, a Markov chain model is established based on velocity, acceleration, road slope and road slope time derivative states. Next, a large set of synthetic driving cycles is generated by using a corresponding 8D transition probability matrix, which is implemented in a sparse form based on a dictionary of keys to improve computational efficiency and reduce memory requirements. In support of synthetic driving cycles validation, a number of time- and frequency-domain statistical features are considered, including unique cross-correlation velocity–acceleration–road slope indicators. To predict fuel consumption related to synthetic driving cycles, an accurate neural network model is introduced which uses a fixed 3D histogram of counted discrete velocity, acceleration, and road slope inputs. The significance of each nominated statistical feature and its impact on fuel consumption is revealed by means of linear regression modelling and least absolute shrinkage and selection operator (LASSO) feature selection method. A model having only several most significant features as inputs and fuel consumption as output is proposed to be used for unambiguous single-criterion validation of synthetic driving cycles with respect to recorded ones. Finally, the proposed validation approach is verified against a widely used method relying on minimization of statistical feature deviations with respect to true values. The results point out that, by applying the proposed synthesis and validation method, it is possible to extract most representative synthetic driving cycles in a straightforward and computationally efficient way. The main anticipated applications include various simulation-based analyses that require representative synthetic driving cycles and/or accurate vehicle energy consumption predictions.

Suggested Citation

  • Jakov Topić & Branimir Škugor & Joško Deur, 2021. "Synthesis and Feature Selection-Supported Validation of Multidimensional Driving Cycles," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4704-:d:541579
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/4704/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/4704/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Claudio Cubito & Federico Millo & Giulio Boccardo & Giuseppe Di Pierro & Biagio Ciuffo & Georgios Fontaras & Simone Serra & Marcos Otura Garcia & Germana Trentadue, 2017. "Impact of Different Driving Cycles and Operating Conditions on CO 2 Emissions and Energy Management Strategies of a Euro-6 Hybrid Electric Vehicle," Energies, MDPI, vol. 10(10), pages 1-18, October.
    2. Jakov Topić & Jure Soldo & Filip Maletić & Branimir Škugor & Joško Deur, 2020. "Virtual Simulation of Electric Bus Fleets for City Bus Transport Electrification Planning," Energies, MDPI, vol. 13(13), pages 1-24, July.
    3. Jakov Topić & Branimir Škugor & Joško Deur, 2019. "Neural Network-Based Modeling of Electric Vehicle Energy Demand and All Electric Range," Energies, MDPI, vol. 12(7), pages 1-20, April.
    4. Branimir Škugor & Joško Deur, 2016. "Delivery vehicle fleet data collection, analysis and naturalistic driving cycles synthesis," International Journal of Innovation and Sustainable Development, Inderscience Enterprises Ltd, vol. 10(1), pages 19-39.
    5. Hyeonjik Lee & Kihyung Lee, 2020. "Comparative Evaluation of the Effect of Vehicle Parameters on Fuel Consumption under NEDC and WLTP," Energies, MDPI, vol. 13(16), pages 1-19, August.
    6. José I. Huertas & Michael Giraldo & Luis F. Quirama & Jenny Díaz, 2018. "Driving Cycles Based on Fuel Consumption," Energies, MDPI, vol. 11(11), pages 1-13, November.
    7. Jiankun Peng & Jiwan Jiang & Fan Ding & Huachun Tan, 2020. "Development of Driving Cycle Construction for Hybrid Electric Bus: A Case Study in Zhengzhou, China," Sustainability, MDPI, vol. 12(17), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zvonimir Dabčević & Branimir Škugor & Jakov Topić & Joško Deur, 2022. "Synthesis of Driving Cycles Based on Low-Sampling-Rate Vehicle-Tracking Data and Markov Chain Methodology," Energies, MDPI, vol. 15(11), pages 1-21, June.
    2. Jakov Topić & Branimir Škugor & Joško Deur, 2022. "Receding-Horizon Prediction of Vehicle Velocity Profile Using Deterministic and Stochastic Deep Neural Network Models," Sustainability, MDPI, vol. 14(17), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zvonimir Dabčević & Branimir Škugor & Jakov Topić & Joško Deur, 2022. "Synthesis of Driving Cycles Based on Low-Sampling-Rate Vehicle-Tracking Data and Markov Chain Methodology," Energies, MDPI, vol. 15(11), pages 1-21, June.
    2. Ross Milligan & Saioa Etxebarria & Tariq Muneer & Eulalia Jadraque Gago, 2019. "Driven Performance of Electric Vehicles in Edinburgh and Its Environs," Energies, MDPI, vol. 12(16), pages 1-22, August.
    3. Barouch Giechaskiel & Dimitrios Komnos & Georgios Fontaras, 2021. "Impacts of Extreme Ambient Temperatures and Road Gradient on Energy Consumption and CO 2 Emissions of a Euro 6d-Temp Gasoline Vehicle," Energies, MDPI, vol. 14(19), pages 1-20, September.
    4. Maksymilian Mądziel & Tiziana Campisi & Artur Jaworski & Giovanni Tesoriere, 2021. "The Development of Strategies to Reduce Exhaust Emissions from Passenger Cars in Rzeszow City—Poland. A Preliminary Assessment of the Results Produced by the Increase of E-Fleet," Energies, MDPI, vol. 14(4), pages 1-21, February.
    5. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    6. Xinglong Liu & Fuquan Zhao & Han Hao & Kangda Chen & Zongwei Liu & Hassan Babiker & Amer Ahmad Amer, 2020. "From NEDC to WLTP: Effect on the Energy Consumption, NEV Credits, and Subsidies Policies of PHEV in the Chinese Market," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    7. Da Wang & Chuanxue Song & Yulong Shao & Shixin Song & Silun Peng & Feng Xiao, 2018. "Optimal Control Strategy for Series Hybrid Electric Vehicles in the Warm-Up Process," Energies, MDPI, vol. 11(5), pages 1-20, April.
    8. Liang Zhang & Shunli Wang & Daniel-Ioan Stroe & Chuanyun Zou & Carlos Fernandez & Chunmei Yu, 2020. "An Accurate Time Constant Parameter Determination Method for the Varying Condition Equivalent Circuit Model of Lithium Batteries," Energies, MDPI, vol. 13(8), pages 1-12, April.
    9. Tianming Gao & Vasilii Erokhin & Aleksandr Arskiy, 2019. "Dynamic Optimization of Fuel and Logistics Costs as a Tool in Pursuing Economic Sustainability of a Farm," Sustainability, MDPI, vol. 11(19), pages 1-16, October.
    10. Gnap Jozef & Dočkalik Marek & Dydkowski Grzegorz, 2021. "Examination of the Development of New Bus Registrations with Alternative Powertrains in Europe," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 12(1), pages 147-158, January.
    11. Francis F. Assadian, 2022. "Advanced Control and Estimation Concepts and New Hardware Topologies for Future Mobility," Energies, MDPI, vol. 15(4), pages 1-3, February.
    12. Mohammed Mahedi Hasan & Nikos Avramis & Mikaela Ranta & Andoni Saez-de-Ibarra & Mohamed El Baghdadi & Omar Hegazy, 2021. "Multi-Objective Energy Management and Charging Strategy for Electric Bus Fleets in Cities Using Various ECO Strategies," Sustainability, MDPI, vol. 13(14), pages 1-42, July.
    13. Jakov Topić & Branimir Škugor & Joško Deur, 2019. "Neural Network-Based Modeling of Electric Vehicle Energy Demand and All Electric Range," Energies, MDPI, vol. 12(7), pages 1-20, April.
    14. Danijel Pavković & Mihael Cipek & Filip Plavac & Juraj Karlušić & Matija Krznar, 2022. "Internal Combustion Engine Starting and Torque Boosting Control System Design with Vibration Active Damping Features for a P0 Mild Hybrid Vehicle Configuration," Energies, MDPI, vol. 15(4), pages 1-24, February.
    15. Huertas, José I. & Serrano-Guevara, Oscar & Díaz-Ramírez, Jenny & Prato, Daniel & Tabares, Lina, 2022. "Real vehicle fuel consumption in logistic corridors," Applied Energy, Elsevier, vol. 314(C).
    16. Wang, Shengyou & Zhuge, Chengxiang & Shao, Chunfu & Wang, Pinxi & Yang, Xiong & Wang, Shiqi, 2023. "Short-term electric vehicle charging demand prediction: A deep learning approach," Applied Energy, Elsevier, vol. 340(C).
    17. Alexander Balitskii & Valerii Kolesnikov & Karol F. Abramek & Olexiy Balitskii & Jacek Eliasz & Havrylyuk Marya & Lyubomir Ivaskevych & Ielyzaveta Kolesnikova, 2021. "Influence of Hydrogen-Containing Fuels and Environmentally Friendly Lubricating Coolant on Nitrogen Steels’ Wear Resistance for Spark Ignition Engine Pistons and Rings Kit Gasket Set," Energies, MDPI, vol. 14(22), pages 1-17, November.
    18. Alberto Broatch & Pablo Olmeda & Pau Bares & Sebastián Aceros, 2022. "Integral Thermal Management Studies in Winter Conditions with a Global Model of a Battery-Powered Electric Bus," Energies, MDPI, vol. 16(1), pages 1-24, December.
    19. Raymond Kene & Thomas Olwal & Barend J. van Wyk, 2021. "Sustainable Electric Vehicle Transportation," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    20. Sun, Bin & Zhang, Qijun & Wei, Ning & Jia, Zhenyu & Li, Chunming & Mao, Hongjun, 2022. "The energy flow of moving vehicles for different traffic states in the intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4704-:d:541579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.