IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2995-d369752.html
   My bibliography  Save this article

Reduction in Operating Costs and Environmental Impact Consisting in the Modernization of the Low-Power Cylindrical Wood Chipper Power Unit by Using Alternative Fuel

Author

Listed:
  • Łukasz Warguła

    (Faculty of Mechanical Engineering, Institute of Machine Design, Poznan University of Technology, 60-965 Poznań, Poland)

  • Mateusz Kukla

    (Faculty of Mechanical Engineering, Institute of Machine Design, Poznan University of Technology, 60-965 Poznań, Poland)

  • Piotr Krawiec

    (Faculty of Mechanical Engineering, Institute of Machine Design, Poznan University of Technology, 60-965 Poznań, Poland)

  • Bartosz Wieczorek

    (Faculty of Mechanical Engineering, Institute of Machine Design, Poznan University of Technology, 60-965 Poznań, Poland)

Abstract

Alternative fuel within the meaning of Directive 2014/94/EU is, among others, LPG (liquefied petroleum gas), characterized by a lower purchase cost and lower emissions of toxic exhaust compounds in comparison to the combustion of classic gasoline. In wood chippers, intended for chopping branches, with low-power internal combustion engines that meet the emission standards in force in 2019 in the European Union, in accordance with Regulation 2016/1628/EU, carburetor fuel supply systems are commonly used. Innovative trends in the development of these drives are: electronic fuel injection, systems supporting the adaptation of the working elements to the conditions of use and the use of alternative fuels. The first two solutions significantly affect the cost of purchasing a power unit or modernizing it. The authors of this article indicate, as a beneficial alternative, a cheap (EUR 105) possibility of modernizing the carburetor fuel supply system. It is based on a modification that will allow for the use of LPG instead of gasoline to drive the working system of the wood chipper. This article presents the results of tests on the fuel consumption of a wood chipper powered with gasoline (3.04 L h −1 ) and LPG (3.65 L h −1 ) during continuous chipping. The cost of an hour of chipping related to fuel consumption was determined, which was equal to 3.89 € h −1 while using gasoline, and 2.19 € h −1 when using LPG. The mass flow rate (0.66 t h −1 ) and volumetric flow rate (3.5 m 3 h −1 ) of a wood chipper powered by a low-power (9.5 kW) internal combustion engine with spark ignition were determined. In addition, we determined the cost of producing 1 m 3 of biomass from chipping freshly cut oak branches ( Quercus robur L. Sp. Pl. 996 1753) with a maximum diameter of 80 mm and a humidity of 25%. The branches were selected earlier in such a way that their dimensions as as similar as possible. This amounted to EUR 1.11 for a gasoline-powered drive and EUR 0.63 for a LPG powered one. The benefits of using an alternative fuel supply system, the installation of which increases the cost of the machine by 8.4%, have been confirmed.

Suggested Citation

  • Łukasz Warguła & Mateusz Kukla & Piotr Krawiec & Bartosz Wieczorek, 2020. "Reduction in Operating Costs and Environmental Impact Consisting in the Modernization of the Low-Power Cylindrical Wood Chipper Power Unit by Using Alternative Fuel," Energies, MDPI, vol. 13(11), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2995-:d:369752
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2995/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2995/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Spinelli, Raffaele & Cavallo, Eugenio & Eliasson, Lars & Facello, Alessio & Magagnotti, Natascia, 2015. "The effect of drum design on chipper performance," Renewable Energy, Elsevier, vol. 81(C), pages 57-61.
    2. Michael D. Noel, 2019. "Calendar synchronization of gasoline price increases," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 28(2), pages 355-370, April.
    3. Lichter, Andreas & Pestel, Nico & Sommer, Eric, 2017. "Productivity effects of air pollution: Evidence from professional soccer," Labour Economics, Elsevier, vol. 48(C), pages 54-66.
    4. Andrea Colantoni & Francesco Mazzocchi & Vincenzo Laurendi & Stefano Grigolato & Francesca Monarca & Danilo Monarca & Massimo Cecchini, 2017. "Innovative Solution for Reducing the Run-Down Time of the Chipper Disc Using a Brake Clamp Device," Agriculture, MDPI, vol. 7(8), pages 1-11, August.
    5. Manzone, Marco, 2015. "Energy consumption and CO2 analysis of different types of chippers used in wood biomass plantations," Applied Energy, Elsevier, vol. 156(C), pages 686-692.
    6. Le Boennec, Rémy & Salladarré, Frédéric, 2017. "The impact of air pollution and noise on the real estate market. The case of the 2013 European Green Capital: Nantes, France," Ecological Economics, Elsevier, vol. 138(C), pages 82-89.
    7. Rahman, Sajjadur, 2016. "Another perspective on gasoline price responses to crude oil price changes," Energy Economics, Elsevier, vol. 55(C), pages 10-18.
    8. Carolina Marchant & Víctor Leiva & George Christakos & M. Fernanda Cavieres, 2019. "Monitoring urban environmental pollution by bivariate control charts: New methodology and case study in Santiago, Chile," Environmetrics, John Wiley & Sons, Ltd., vol. 30(5), August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beáta Stehlíková & Katarína Čulková & Marcela Taušová & Ľubomír Štrba & Eva Mihaliková, 2021. "Evaluation of Communal Waste in Slovakia from the View of Chosen Economic Indicators," Energies, MDPI, vol. 14(16), pages 1-22, August.
    2. Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Impact of Compressed Natural Gas (CNG) Fuel Systems in Small Engine Wood Chippers on Exhaust Emissions and Fuel Consumption," Energies, MDPI, vol. 13(24), pages 1-21, December.
    3. Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Influence of the Use of Liquefied Petroleum Gas (LPG) Systems in Woodchippers Powered by Small Engines on Exhaust Emissions and Operating Costs," Energies, MDPI, vol. 13(21), pages 1-17, November.
    4. Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Influence of Innovative Woodchipper Speed Control Systems on Exhaust Gas Emissions and Fuel Consumption in Urban Areas," Energies, MDPI, vol. 13(13), pages 1-22, June.
    5. Gintaras Valeika & Jonas Matijošius & Krzysztof Górski & Alfredas Rimkus & Ruslans Smigins, 2021. "A Study of Energy and Environmental Parameters of a Diesel Engine Running on Hydrogenated Vegetable Oil (HVO) with Addition of Biobutanol and Castor Oil," Energies, MDPI, vol. 14(13), pages 1-29, July.
    6. Warguła, Łukasz & Kukla, Mateusz & Wieczorek, Bartosz & Krawiec, Piotr, 2022. "Energy consumption of the wood size reduction processes with employment of a low-power machines with various cutting mechanisms," Renewable Energy, Elsevier, vol. 181(C), pages 630-639.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Influence of Innovative Woodchipper Speed Control Systems on Exhaust Gas Emissions and Fuel Consumption in Urban Areas," Energies, MDPI, vol. 13(13), pages 1-22, June.
    2. Warguła, Łukasz & Kukla, Mateusz & Wieczorek, Bartosz & Krawiec, Piotr, 2022. "Energy consumption of the wood size reduction processes with employment of a low-power machines with various cutting mechanisms," Renewable Energy, Elsevier, vol. 181(C), pages 630-639.
    3. Timothy J. Halliday & Rachel Inafuku & Lester Lusher & Aureo de Paula, 2022. "VOG: Using Volcanic Eruptions to Estimate the Impact of Air Pollution on Student Learning Outcomes," Working Papers 202203, University of Hawaii at Manoa, Department of Economics.
    4. D. O. Olayungbo & T. A. Ojeyinka, 2022. "Crude oil prices pass-through to retail petroleum product prices in Nigeria: evidence from hidden cointegration approach," Economic Change and Restructuring, Springer, vol. 55(2), pages 951-972, May.
    5. Guo, Liwen & Cheng, Zhiming & Tani, Massimiliano & Cook, Sarah & Zhao, Jiaqi & Chen, Xi, 2022. "Air Pollution and Entrepreneurship," GLO Discussion Paper Series 1196, Global Labor Organization (GLO).
    6. Ramesh Chandra Das & Tonmoy Chatterjee & Enrico Ivaldi, 2022. "Nexus between Housing Price and Magnitude of Pollution: Evidence from the Panel of Some High- and-Low Polluting Cities of the World," Sustainability, MDPI, vol. 14(15), pages 1-18, July.
    7. Aloys Prinz & David J. Richter, 2021. "Feinstaubbelastung und Lebenserwartung in Deutschland," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 15(3), pages 237-272, December.
    8. Joris Klingen & Jos Ommeren, 2022. "Risk-Taking and Air Pollution: Evidence from Chess," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(1), pages 73-93, January.
    9. Brox, Enzo & Krieger, Tommy, 2022. "Birthplace diversity and team performance," Labour Economics, Elsevier, vol. 79(C).
    10. Quan-Hoang Vuong & Tri Vu Phu & Tuyet-Anh T. Le & Quy Van Khuc, 2021. "Exploring Inner-City Residents’ and Foreigners’ Commitment to Improving Air Pollution: Evidence from a Field Survey in Hanoi, Vietnam," Data, MDPI, vol. 6(4), pages 1-13, April.
    11. Kai Fischer & J. James Reade & W. Benedikt Schmal, 2021. "The Long Shadow of an Infection: COVID-19 and Performance at Work," Economics Discussion Papers em-dp2021-17, Department of Economics, University of Reading.
    12. Bragoudakis, Zacharias & Degiannakis, Stavros & Filis, George, 2019. "Oil and pump prices: Is there any asymmetry in the Greek oil downstream sector?," MPRA Paper 95407, University Library of Munich, Germany.
    13. Luis Sarmiento & Adam Nowakowski, 2023. "Court Decisions and Air Pollution: Evidence from Ten Million Penal Cases in India," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 86(3), pages 605-644, November.
    14. Joris Klingen & Jos van Ommeren, 2020. "Risk attitude and air pollution: Evidence from chess," Tinbergen Institute Discussion Papers 20-027/VIII, Tinbergen Institute.
    15. Picchio, Matteo & van Ours, Jan C., 2023. "The Impact of High Temperatures on Performance in Work-Related Activities," IZA Discussion Papers 16431, Institute of Labor Economics (IZA).
    16. Bragoudakis, Zacharias & Degiannakis, Stavros & Filis, George, 2020. "Oil and pump prices: Testing their asymmetric relationship in a robust way," Energy Economics, Elsevier, vol. 88(C).
    17. Olexiy Kyrychenko, 2021. "Environmental Regulations, Air Pollution, and Infant Mortality in India: A Reexamination," CERGE-EI Working Papers wp703, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    18. Guangyong Zhang & Lixin Tian & Wenbin Zhang & Xu Yan & Bingyue Wan & Zaili Zhen, 2020. "A Study on the Similarities and Differences of the Conventional Gasoline Spot Price Fluctuation Network between Different Harbors," Sustainability, MDPI, vol. 12(2), pages 1-25, January.
    19. Naidenova, Iuliia & Parshakov, Petr & Suvorov, Sergei, 2022. "Air pollution and individual productivity: Evidence from the Ironman Triathlon results," Economics & Human Biology, Elsevier, vol. 47(C).
    20. Elsner, Benjamin & Wozny, Florian, 2018. "The Human Capital Cost of Radiation: Long-Run Evidence from Exposure Outside the Womb," IZA Discussion Papers 11408, Institute of Labor Economics (IZA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2995-:d:369752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.