IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5773-d439851.html
   My bibliography  Save this article

Influence of the Use of Liquefied Petroleum Gas (LPG) Systems in Woodchippers Powered by Small Engines on Exhaust Emissions and Operating Costs

Author

Listed:
  • Łukasz Warguła

    (Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland)

  • Mateusz Kukla

    (Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland)

  • Piotr Lijewski

    (Institute of Internal Combustion Engines and Drives, Faculty of Civil Engineering and Transport, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland)

  • Michał Dobrzyński

    (Institute of Internal Combustion Engines and Drives, Faculty of Civil Engineering and Transport, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland)

  • Filip Markiewicz

    (Institute of Internal Combustion Engines and Drives, Faculty of Civil Engineering and Transport, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland)

Abstract

The use of alternative fuels is a contemporary trend in science aimed at the protection of non-renewable resources, reducing the negative impact on people and reducing the negative impact on the natural environment. Liquefied petroleum gas (LPG) is an alternative fuel within the meaning of the European Union Directive (2014/94/UE), as it is an alternative for energy sources derived from crude oil. The use of LPG fuel in low-power internal combustion engines is one of the currently developed scientific research directions. It results from the possibility of limiting air pollutant emissions compared to the commonly used gasoline and the lower cost of this fuel in many countries. By “gasoline 95” the Authors mean non-lead petrol as a flammable liquid that is used primarily as a fuel in most spark-ignited internal combustion engines, whereas 95 is an octane rating (octane number). This article presents the results of research on fuel consumption, toxic exhaust gas emission, and operating costs of a woodchipper used for shredding branches with a diameter of up to 100 mm in real working conditions. The woodchipper, powered by a 9.5 kW internal combustion engine, fueled by gasoline and LPG was tested. Liberal regulations of the European Union (Regulation 2016/1628/EU) on the emission of harmful exhaust compounds from small spark-ignition engines (up to 19 kW) and non-road applications contribute to the low technical advancement level of these engines. The authors researched a relatively simple and cheap LPG fueling system, as in their opinion, such a system has the best chance of being implemented for use. In the study, the branches of cherry plum were shredded (Prunus cerasiferaEhrh. Beitr. Naturk. 4:17. 1789 (Gartenkalender4:189-204. 1784)). Their diameter was ca. 80 mm, length 3 m, and moisture content ca. 25%. The system was tested during the shredding of the branches in real working conditions (the frequency of supplying the branches about 4 min −1 and the mass productivity of about 0.73 t/h). Based on the recorded results, it was found that the LPG fueled engine was characterized by higher carbon monoxide (CO) and nitrogen oxides (NO x ) emissions by 22% and 27%, respectively. A positive effect of using LPG was the reduction of fuel consumption by 28% and carbon dioxide (CO 2 ) and hydrocarbons (HC) emissions by 37% and 83%, respectively. The results of the research show that the use of alternative fuels can bring benefits in terms of CO 2 and HC emissions, but at the same time be characterized by an increase in CO and NO x emissions. Further research should be conducted on innovative alternative fuel supply systems, such as in the automotive industry. At the same time, legislators should limit the use of low-quality fuel supply systems with the limits of pollutant emissions in exhaust gases, contributing to the development and economic competitiveness of new fuel injection systems.

Suggested Citation

  • Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Influence of the Use of Liquefied Petroleum Gas (LPG) Systems in Woodchippers Powered by Small Engines on Exhaust Emissions and Operating Costs," Energies, MDPI, vol. 13(21), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5773-:d:439851
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5773/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5773/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabiana Passos & Thiago Bressani-Ribeiro & Sonaly Rezende & Carlos A. L. Chernicharo, 2020. "Potential Applications of Biogas Produced in Small-Scale UASB-Based Sewage Treatment Plants in Brazil," Energies, MDPI, vol. 13(13), pages 1-12, July.
    2. Łukasz Warguła & Mateusz Kukla & Piotr Krawiec & Bartosz Wieczorek, 2020. "Reduction in Operating Costs and Environmental Impact Consisting in the Modernization of the Low-Power Cylindrical Wood Chipper Power Unit by Using Alternative Fuel," Energies, MDPI, vol. 13(11), pages 1-16, June.
    3. Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Influence of Innovative Woodchipper Speed Control Systems on Exhaust Gas Emissions and Fuel Consumption in Urban Areas," Energies, MDPI, vol. 13(13), pages 1-22, June.
    4. Carolina Marchant & Víctor Leiva & George Christakos & M. Fernanda Cavieres, 2019. "Monitoring urban environmental pollution by bivariate control charts: New methodology and case study in Santiago, Chile," Environmetrics, John Wiley & Sons, Ltd., vol. 30(5), August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maksymilian Mądziel, 2023. "Liquified Petroleum Gas-Fuelled Vehicle CO 2 Emission Modelling Based on Portable Emission Measurement System, On-Board Diagnostics Data, and Gradient-Boosting Machine Learning," Energies, MDPI, vol. 16(6), pages 1-15, March.
    2. Beáta Stehlíková & Katarína Čulková & Marcela Taušová & Ľubomír Štrba & Eva Mihaliková, 2021. "Evaluation of Communal Waste in Slovakia from the View of Chosen Economic Indicators," Energies, MDPI, vol. 14(16), pages 1-22, August.
    3. Gabrielius MEJERAS & Alfredas RIMKUS & Jonas MATIJOŠIUS, 2021. "Investigation Of The Influence Of Hydrogen On The Energy Performance Of A Spark Ignition Engine Using Gasoline And Bioethanol Fuel Mixtures," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 16(3), pages 41-51, September.
    4. Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Impact of Compressed Natural Gas (CNG) Fuel Systems in Small Engine Wood Chippers on Exhaust Emissions and Fuel Consumption," Energies, MDPI, vol. 13(24), pages 1-21, December.
    5. S. M. Ashrafur Rahman & I. M. Rizwanul Fattah & Hwai Chyuan Ong & Fajle Rabbi Ashik & Mohammad Mahmudul Hassan & Md Tausif Murshed & Md Ashraful Imran & Md Hamidur Rahman & Md Akibur Rahman & Mohammad, 2021. "State-of-the-Art of Establishing Test Procedures for Real Driving Gaseous Emissions from Light- and Heavy-Duty Vehicles," Energies, MDPI, vol. 14(14), pages 1-32, July.
    6. Kakran, Shubham & Sidhu, Arpit & Kumar, Ashish & Ben Youssef, Adel & Lohan, Sheenam, 2023. "Hydrogen energy in BRICS-US: A whirl succeeding fuel treasure," Applied Energy, Elsevier, vol. 334(C).
    7. Kristina Čižiūnienė & Jonas Matijošius & Audrius Čereška & Artūras Petraška, 2020. "Algorithm for Reducing Truck Noise on Via Baltica Transport Corridors in Lithuania," Energies, MDPI, vol. 13(24), pages 1-22, December.
    8. Sai Manoj Rayapureddy & Jonas Matijošius & Alfredas Rimkus, 2021. "Comparison of Research Data of Diesel–Biodiesel–Isopropanol and Diesel–Rapeseed Oil–Isopropanol Fuel Blends Mixed at Different Proportions on a CI Engine," Sustainability, MDPI, vol. 13(18), pages 1-14, September.
    9. Warguła, Łukasz & Kukla, Mateusz & Wieczorek, Bartosz & Krawiec, Piotr, 2022. "Energy consumption of the wood size reduction processes with employment of a low-power machines with various cutting mechanisms," Renewable Energy, Elsevier, vol. 181(C), pages 630-639.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beáta Stehlíková & Katarína Čulková & Marcela Taušová & Ľubomír Štrba & Eva Mihaliková, 2021. "Evaluation of Communal Waste in Slovakia from the View of Chosen Economic Indicators," Energies, MDPI, vol. 14(16), pages 1-22, August.
    2. Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Impact of Compressed Natural Gas (CNG) Fuel Systems in Small Engine Wood Chippers on Exhaust Emissions and Fuel Consumption," Energies, MDPI, vol. 13(24), pages 1-21, December.
    3. Warguła, Łukasz & Kukla, Mateusz & Wieczorek, Bartosz & Krawiec, Piotr, 2022. "Energy consumption of the wood size reduction processes with employment of a low-power machines with various cutting mechanisms," Renewable Energy, Elsevier, vol. 181(C), pages 630-639.
    4. Shamsuzzaman, Mohammad & Shamsuzzoha, Ahm & Maged, Ahmed & Haridy, Salah & Bashir, Hamdi & Karim, Azharul, 2021. "Effective monitoring of carbon emissions from industrial sector using statistical process control," Applied Energy, Elsevier, vol. 300(C).
    5. Alejandra Tapia & Viviana Giampaoli & Víctor Leiva & Yuhlong Lio, 2020. "Data-Influence Analytics in Predictive Models Applied to Asthma Disease," Mathematics, MDPI, vol. 8(9), pages 1-19, September.
    6. Łukasz Warguła & Mateusz Kukla & Piotr Krawiec & Bartosz Wieczorek, 2020. "Reduction in Operating Costs and Environmental Impact Consisting in the Modernization of the Low-Power Cylindrical Wood Chipper Power Unit by Using Alternative Fuel," Energies, MDPI, vol. 13(11), pages 1-16, June.
    7. Gonzálo Carreño & Xaviera A. López-Cortés & Carolina Marchant, 2022. "Machine Learning Models to Predict Critical Episodes of Environmental Pollution for PM2.5 and PM10 in Talca, Chile," Mathematics, MDPI, vol. 10(3), pages 1-17, January.
    8. Aykroyd, Robert G. & Leiva, Víctor & Ruggeri, Fabrizio, 2019. "Recent developments of control charts, identification of big data sources and future trends of current research," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 221-232.
    9. Łukasz Warguła & Piotr Kaczmarzyk, 2022. "Legal Regulations of Restrictions of Air Pollution Made by Mobile Positive Pressure Fans—The Case Study for Europe: A Review," Energies, MDPI, vol. 15(20), pages 1-11, October.
    10. Philomina Mamley Adantey Arthur & Yacouba Konaté & Boukary Sawadogo & Gideon Sagoe & Bismark Dwumfour-Asare & Issahaku Ahmed & Richard Bayitse & Kofi Ampomah-Benefo, 2023. "Evaluating the Potential of Renewable Energy Sources in a Full-Scale Upflow Anaerobic Sludge Blanket Reactor Treating Municipal Wastewater in Ghana," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    11. Rodrigo Puentes & Carolina Marchant & Víctor Leiva & Jorge I. Figueroa-Zúñiga & Fabrizio Ruggeri, 2021. "Predicting PM2.5 and PM10 Levels during Critical Episodes Management in Santiago, Chile, with a Bivariate Birnbaum-Saunders Log-Linear Model," Mathematics, MDPI, vol. 9(6), pages 1-24, March.
    12. Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Influence of Innovative Woodchipper Speed Control Systems on Exhaust Gas Emissions and Fuel Consumption in Urban Areas," Energies, MDPI, vol. 13(13), pages 1-22, June.
    13. Hao Wu & Xinwei Gao, 2021. "Multimodal Data Based Regression to Monitor Air Pollutant Emission in Factories," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    14. Luis Sánchez & Víctor Leiva & Manuel Galea & Helton Saulo, 2021. "Birnbaum‐Saunders quantile regression and its diagnostics with application to economic data," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 37(1), pages 53-73, January.
    15. Gintaras Valeika & Jonas Matijošius & Krzysztof Górski & Alfredas Rimkus & Ruslans Smigins, 2021. "A Study of Energy and Environmental Parameters of a Diesel Engine Running on Hydrogenated Vegetable Oil (HVO) with Addition of Biobutanol and Castor Oil," Energies, MDPI, vol. 14(13), pages 1-29, July.
    16. S. M. Ashrafur Rahman & I. M. Rizwanul Fattah & Hwai Chyuan Ong & Fajle Rabbi Ashik & Mohammad Mahmudul Hassan & Md Tausif Murshed & Md Ashraful Imran & Md Hamidur Rahman & Md Akibur Rahman & Mohammad, 2021. "State-of-the-Art of Establishing Test Procedures for Real Driving Gaseous Emissions from Light- and Heavy-Duty Vehicles," Energies, MDPI, vol. 14(14), pages 1-32, July.
    17. Maria Cristina Collivignarelli & Alessandro Abbà & Francesca Maria Caccamo & Silvia Calatroni & Vincenzo Torretta & Ioannis A. Katsoyiannis & Marco Carnevale Miino & Elena Cristina Rada, 2021. "Applications of Up-Flow Anaerobic Sludge Blanket (UASB) and Characteristics of Its Microbial Community: A Review of Bibliometric Trend and Recent Findings," IJERPH, MDPI, vol. 18(19), pages 1-25, September.
    18. Víctor Leiva & Helton Saulo & Rubens Souza & Robert G. Aykroyd & Roberto Vila, 2021. "A new BISARMA time series model for forecasting mortality using weather and particulate matter data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 346-364, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5773-:d:439851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.