IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i10p441-d421018.html
   My bibliography  Save this article

How Does Climate Change Affect Rice Yield in China?

Author

Listed:
  • Wenjian He

    (College of Business, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Yiyang Liu

    (College of Business, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Huaping Sun

    (Institute of Industrial Economics, School of Finance and Economics, Jiangsu University, Zhenjiang 212013, China)

  • Farhad Taghizadeh-Hesary

    (Social Science Research Institute, Tokai University, Hiratsuka-shi, Kanagawa-ken 259-1292, Japan)

Abstract

The global warming phenomenon has undoubtedly brought unprecedented challenges to rice production, vital for food security in Southeast Asian countries and China. Most studies on this topic have focused narrowly on the direct effect of climate change on rice yield, neglecting the indirect effect. Using panel data from 30 provinces in China from 1990 to 2016, in this paper, we propose and test a mediational effect model to examine the mechanisms of how climate change affects rice yield. We find that climate change leads to changes in functional irrigation areas, farmers’ fertilizing behavior, and agricultural labor supply, and it is these mediating factors that effectively transmit the impact of climate change to China’s rice production. The positive indirect impact of climate change on the factors of production often partially or overly compensates for the adverse direct effect of climate change on rice yield, leading to a surprising observation of the association of climate change with increased rice yield, at least in the short run. We also provide some preliminary policy advice based on the analysis.

Suggested Citation

  • Wenjian He & Yiyang Liu & Huaping Sun & Farhad Taghizadeh-Hesary, 2020. "How Does Climate Change Affect Rice Yield in China?," Agriculture, MDPI, vol. 10(10), pages 1-16, September.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:10:p:441-:d:421018
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/10/441/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/10/441/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hui Ju & Marijn Velde & Erda Lin & Wei Xiong & Yingchun Li, 2013. "The impacts of climate change on agricultural production systems in China," Climatic Change, Springer, vol. 120(1), pages 313-324, September.
    2. Shuai Chen & Xiaoguang Chen & Jintao Xu, 2016. "Assessing the impacts of temperature variations on rice yield in China," Climatic Change, Springer, vol. 138(1), pages 191-205, September.
    3. Chen, Shuai & Chen, Xiaoguang & Xu, Jintao, 2016. "Impacts of climate change on agriculture: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 76(C), pages 105-124.
    4. Avery S. Cohn & Leah K. VanWey & Stephanie A. Spera & John F. Mustard, 2016. "Cropping frequency and area response to climate variability can exceed yield response," Nature Climate Change, Nature, vol. 6(6), pages 601-604, June.
    5. William G. Moseley, 2016. "Agriculture on the Brink: Climate Change, Labor and Smallholder Farming in Botswana," Land, MDPI, vol. 5(3), pages 1-14, June.
    6. Kirchberger, Martina, 2017. "Natural disasters and labor markets," Journal of Development Economics, Elsevier, vol. 125(C), pages 40-58.
    7. Minpeng Chen & Fu Sun & Pam Berry & Rob Tinch & Hui Ju & Erda Lin, 2015. "Integrated assessment of China’s adaptive capacity to climate change with a capital approach," Climatic Change, Springer, vol. 128(3), pages 367-380, February.
    8. Barrios, Salvador & Ouattara, Bazoumana & Strobl, Eric, 2008. "The impact of climatic change on agricultural production: Is it different for Africa?," Food Policy, Elsevier, vol. 33(4), pages 287-298, August.
    9. Jean‐Paul Chavas & Salvatore Di Falco, 2012. "On the Role of Risk Versus Economies of Scope in Farm Diversification With an Application to Ethiopian Farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 63(1), pages 25-55, February.
    10. Liangliang Gao & Jikun Huang & Scott Rozelle, 2012. "Rental markets for cultivated land and agricultural investments in China," Agricultural Economics, International Association of Agricultural Economists, vol. 43(4), pages 391-403, July.
    11. David Wuepper & Habtamu Yesigat Ayenew & Johannes Sauer, 2018. "Social Capital, Income Diversification and Climate Change Adaptation: Panel Data Evidence from Rural Ethiopia," Journal of Agricultural Economics, Wiley Blackwell, vol. 69(2), pages 458-475, June.
    12. Huizi Bai & Fulu Tao & Dengpan Xiao & Fengshan Liu & He Zhang, 2016. "Attribution of yield change for rice-wheat rotation system in China to climate change, cultivars and agronomic management in the past three decades," Climatic Change, Springer, vol. 135(3), pages 539-553, April.
    13. Dominic R. Kniveton & Christopher D. Smith & Richard Black, 2012. "Emerging migration flows in a changing climate in dryland Africa," Nature Climate Change, Nature, vol. 2(6), pages 444-447, June.
    14. Cui, Xiaomeng, 2020. "Climate change and adaptation in agriculture: Evidence from US cropping patterns," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    15. Liqiu Zhao & Shouying Liu & Wei Zhang, 2018. "New Trends in Internal Migration in China: Profiles of the New†generation Migrants," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 26(1), pages 18-41, January.
    16. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    17. Xiaoguang Chen & Shuai Chen, 2018. "China feels the heat: negative impacts of high temperatures on China's rice sector," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(4), pages 576-588, October.
    18. Mark M. Pitt, 1983. "Farm-Level Fertilizer Demand in Java: A Meta-Production Function Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 65(3), pages 502-508.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guogang Wang & Shengnan Huang & Yongxiang Zhang & Sicheng Zhao & Chengji Han, 2022. "How Has Climate Change Driven the Evolution of Rice Distribution in China?," IJERPH, MDPI, vol. 19(23), pages 1-17, December.
    2. Alogoskoufis, Spyros & Dunz, Nepomuk & Emambakhsh, Tina & Hennig, Tristan & Kaijser, Michiel & Kouratzoglou, Charalampos & Muñoz, Manuel A. & Parisi, Laura & Salleo, Carmelo, 2021. "ECB’s economy-wide climate stress test," Occasional Paper Series 281, European Central Bank.
    3. Serey Sok & Nyda Chhinh & Sanara Hor & Pheakdey Nguonphan, 2021. "Climate Change Impacts on Rice Cultivation: A Comparative Study of the Tonle Sap and Mekong River," Sustainability, MDPI, vol. 13(16), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    2. Chen, Xiaoguang & Khanna, Madhu & Yang, Lu, 2021. "Rising Temperatures Reduce Economic Output of Food Processing Firms in China," 2021 Conference, August 17-31, 2021, Virtual 313797, International Association of Agricultural Economists.
    3. Hengli Wang & Hong Liu & Rui Ma, 2022. "Assessment and Prediction of Grain Production Considering Climate Change and Air Pollution in China," Sustainability, MDPI, vol. 14(15), pages 1-22, July.
    4. Chen, Xiaoguang & Cui, Xiaomeng & Gao, Jing, 2023. "Differentiated Agricultural Sensitivity and Adaptability to Rising Temperatures across Regions and Sectors in China," 2023 Annual Meeting, July 23-25, Washington D.C. 335522, Agricultural and Applied Economics Association.
    5. Seungki Lee & Yongjie Ji & GianCarlo Moschini, 2021. "Agricultural Innovation and Adaptation to Climate Change: Insights from Genetically Engineered Maize," Center for Agricultural and Rural Development (CARD) Publications 21-wp616, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    6. Xun Su & Minpeng Chen, 2022. "Econometric Approaches That Consider Farmers’ Adaptation in Estimating the Impacts of Climate Change on Agriculture: A Review," Sustainability, MDPI, vol. 14(21), pages 1-23, October.
    7. Robert Becker Pickson & Ge He & Elliot Boateng, 2022. "Impacts of climate change on rice production: evidence from 30 Chinese provinces," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3907-3925, March.
    8. Zhou, Li & Turvey, Calum G., 2014. "Climate change, adaptation and China's grain production," China Economic Review, Elsevier, vol. 28(C), pages 72-89.
    9. Yong Liu & Jorge Ruiz-Menjivar & Junbiao Zhang, 2023. "Do soil nutrient management practices improve climate resilience? Empirical evidence from rice farmers in central China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 10029-10054, September.
    10. Christopher N. Boyer & Eunchun Park & Seong D. Yun, 2023. "Corn and soybean prevented planting acres response to weather," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(2), pages 970-983, June.
    11. Ting Ye & Wenjian He & Zhiyong Liu, 2022. "Exploring the Influence of Land Titling on Farmland Transfer-Out Based on Land Parcel Data," Sustainability, MDPI, vol. 14(5), pages 1-18, February.
    12. Yoro Diallo & Sébastien Marchand & Etienne Espagne, 2019. "Impacts of extreme events on technical efficiency in Vietnamese agriculture," CERDI Working papers halshs-02080285, HAL.
    13. Chen, Xiaoguang & Chen, Shuai, 2018. "China feels the heat: negative impacts of high temperatures on China’s rice sector," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(4), October.
    14. Cui, Xiaomeng, 2020. "Climate change and adaptation in agriculture: Evidence from US cropping patterns," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    15. Cristian Rogério Foguesatto & Felipe Dalzotto Artuzo & Edson Talamini & João Armando Dessimon Machado, 2020. "Understanding the divergences between farmer’s perception and meteorological records regarding climate change: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(1), pages 1-16, January.
    16. Wen, Jun & Zhao, Xin-Xin & Fu, Qiang & Chang, Chun-Ping, 2023. "The impact of extreme weather events on green innovation: Which ones bring to the most harm?," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    17. Ahmed, Musa Hasen & Tesfaye, Wondimagegn Mesfin & Gassmann, Franziska, 2022. "Within Growing Season Weather Variability and Land Allocation Decisions: Evidence from Maize Farmers in Ethiopia," 96th Annual Conference, April 4-6, 2022, K U Leuven, Belgium 321171, Agricultural Economics Society - AES.
    18. Chen, Shuai & Gong, Binlei, 2021. "Response and adaptation of agriculture to climate change: Evidence from China," Journal of Development Economics, Elsevier, vol. 148(C).
    19. Jiang, Shouzheng & Wu, Jie & Wang, Zhihui & He, Ziling & Wang, Mingjun & Yao, Weiwei & Feng, Yu, 2023. "Spatiotemporal variations of cropland carbon sequestration and water loss across China," Agricultural Water Management, Elsevier, vol. 287(C).
    20. Chen, Xiaoguang & Cui, Xiaomeng & Gao, Jing, 2023. "Differentiated agricultural sensitivity and adaptability to rising temperatures across regions and sectors in China," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:10:p:441-:d:421018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.