IDEAS home Printed from https://ideas.repec.org/a/ags/aareaj/333736.html
   My bibliography  Save this article

China feels the heat: negative impacts of high temperatures on China’s rice sector

Author

Listed:
  • Chen, Xiaoguang
  • Chen, Shuai

Abstract

We analysed a county-level data set of single-season rice yield and daily weather outcomes in China to examine the effects of temperature on China’s rice sector. We found that rice yield exhibited highly nonlinear responses to temperature changes: rice yield increased with temperature up to 28°C and decreased sharply with higher temperatures. Holding current growing seasons and regions constant, average rice yield in China is projected to decrease by 10–19 per cent by 2050 and 11–33 per cent by 2070 due to future warming under the global climate models HadGEM2-ES and NorESM1-M. These results imply that future warming poses a major challenge for Chinese rice farmers and that the effectiveness of adaptations will depend on how well they reduce the negative temperature impacts on rice yield because of very hot days.

Suggested Citation

  • Chen, Xiaoguang & Chen, Shuai, 2018. "China feels the heat: negative impacts of high temperatures on China’s rice sector," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(4), October.
  • Handle: RePEc:ags:aareaj:333736
    DOI: 10.22004/ag.econ.333736
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/333736/files/ajar12267.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.333736?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chen, Shuai & Chen, Xiaoguang & Xu, Jintao, 2016. "Impacts of climate change on agriculture: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 76(C), pages 105-124.
    2. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    3. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    4. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    5. Shuai Chen & Xiaoguang Chen & Jintao Xu, 2016. "Assessing the impacts of temperature variations on rice yield in China," Climatic Change, Springer, vol. 138(1), pages 191-205, September.
    6. Maximilian Auffhammer & V. Ramanathan & Jeffrey Vincent, 2012. "Climate change, the monsoon, and rice yield in India," Climatic Change, Springer, vol. 111(2), pages 411-424, March.
    7. Bruce A. McCarl & Xavier Villavicencio & Ximing Wu, 2008. "Climate Change and Future Analysis: Is Stationarity Dying?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(5), pages 1241-1247.
    8. Zhang, Peng & Zhang, Junjie & Chen, Minpeng, 2017. "Economic impacts of climate change on agriculture: The importance of additional climatic variables other than temperature and precipitation," Journal of Environmental Economics and Management, Elsevier, vol. 83(C), pages 8-31.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qinyu Deng & Wei Xie & Ke Wang, 2023. "Impact of extreme temperatures on production of different rice types: A county‐level analysis for China," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(2), pages 1097-1133, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    2. Huang, Kaixing & Zhao, Hong & Huang, Jikun & Wang, Jinxia & Findlay, Christopher, 2020. "The impact of climate change on the labor allocation: Empirical evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    3. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2018. "Climate Change and Agriculture: Farmer Adaptation to Extreme Heat," Discussion Papers dp18-02, Department of Economics, Simon Fraser University.
    4. Chen, Shuai & Gong, Binlei, 2021. "Response and adaptation of agriculture to climate change: Evidence from China," Journal of Development Economics, Elsevier, vol. 148(C).
    5. Surender Kumar & Madhu Khanna, 2023. "Distributional heterogeneity in climate change impacts and adaptation: Evidence from Indian agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 54(2), pages 147-160, March.
    6. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2018. "Climate change and agriculture: farmer adaptation to extreme heat," IFS Working Papers W18/06, Institute for Fiscal Studies.
    7. Sedova, Barbora & Kalkuhl, Matthias, 2020. "Who are the climate migrants and where do they go? Evidence from rural India," World Development, Elsevier, vol. 129(C).
    8. Fernando M. Arag'on & Francisco Oteiza & Juan Pablo Rud, 2019. "Climate Change and Agriculture: Subsistence Farmers' Response to Extreme Heat," Papers 1902.09204, arXiv.org, revised Feb 2019.
    9. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2023. "The Impact of Climate Change on Risk and Return in Indian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 1-27, May.
    10. Chen, Xiaoguang & Cui, Xiaomeng & Gao, Jing, 2023. "Differentiated Agricultural Sensitivity and Adaptability to Rising Temperatures across Regions and Sectors in China," 2023 Annual Meeting, July 23-25, Washington D.C. 335522, Agricultural and Applied Economics Association.
    11. Sabrina Auci & Donatella Vignani, 2020. "Climate variability and agriculture in Italy: a stochastic frontier analysis at the regional level," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 37(2), pages 381-409, July.
    12. Robert Becker Pickson & Ge He & Elliot Boateng, 2022. "Impacts of climate change on rice production: evidence from 30 Chinese provinces," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3907-3925, March.
    13. Chengzheng Li & Zheng Pan, 2021. "How do extremely high temperatures affect labor market performance? Evidence from rural China," Empirical Economics, Springer, vol. 61(4), pages 2265-2291, October.
    14. Chen, Xiaoguang & Yang, Lu, 2019. "Temperature and industrial output: Firm-level evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 257-274.
    15. Shuai Chen & Xiaoguang Chen & Jintao Xu, 2016. "Assessing the impacts of temperature variations on rice yield in China," Climatic Change, Springer, vol. 138(1), pages 191-205, September.
    16. Duan, Hongbo & Yuan, Deyu & Cai, Zongwu & Wang, Shouyang, 2022. "Valuing the impact of climate change on China’s economic growth," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 155-174.
    17. Farzana Hossain & Reshad N. Ahsan, 2022. "When it Rains, it Pours: Estimating the Spatial Spillover Effect of Rainfall," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(2), pages 327-354, June.
    18. Malikov, Emir & Miao, Ruiqing & Zhang, Jingfang, 2020. "Distributional and temporal heterogeneity in the climate change effects on U.S. agriculture," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    19. Li, Chengzheng & Cong, Jiajia & Gu, Haiying & Zhang, Peng, 2021. "The non-linear effect of daily weather on economic performance: Evidence from China," China Economic Review, Elsevier, vol. 69(C).
    20. Zhang, Hongliang & Mu, Jianhong E. & McCarl, Bruce A., 2018. "Adaptation to climate change via adjustment in land leasing: Evidence from dryland wheat farms in the U.S. Pacific Northwest," Land Use Policy, Elsevier, vol. 79(C), pages 424-432.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aareaj:333736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaresea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.