IDEAS home Printed from https://ideas.repec.org/a/fip/fedaer/y2001iq2p1-12nv.86no.2.html
   My bibliography  Save this article

Turn, turn, turn: Predicting turning points in economic activity

Author

Abstract

Policy and investment decisions are made with an eye toward future economic conditions, and an econometric model that can correctly forecast directional changes in the business cycle would be a boon to policymakers, the business community, and the general public. This article provides some evidence on econometric models' ability to predict these directional changes, also known as turning points, in an effort to answer the question, How good is the state of the art in turning point forecasting? ; The author first discusses the definition of turning points and describes different approaches to turning point forecasting, along with their relative advantages and disadvantages. Next, the article assesses the performance of the Atlanta Fed Bayesian vector autoregression (BVAR) model in terms of forecasting turning points relative to a well-known alternative, the Leading Economic Indicators (LEI) Index. The author concludes that the BVAR model forecasts contain information on future recessions that appears superior to that embodied in the LEI Index, at least when simple rules of thumb are used to extract information from the index. ; Relative to a turning point model proposed by Arturo Estrella and Frederic Mishkin, however, the Atlanta Fed BVAR model is far less precise in indicating the exact timing of a recession. In general, the warning signals from models that are specifically designed to forecast turning points appear to be of better quality than those from econometric models like the BVAR model, suggesting that it is worthwhile to supplement the BVAR with a turning point model.

Suggested Citation

  • Marco Del Negro, 2001. "Turn, turn, turn: Predicting turning points in economic activity," Economic Review, Federal Reserve Bank of Atlanta, vol. 86(Q2), pages 1-12.
  • Handle: RePEc:fip:fedaer:y:2001:i:q2:p:1-12:n:v.86no.2
    as

    Download full text from publisher

    File URL: https://www.frbatlanta.org/-/media/documents/research/publications/economic-review/2001/vol86no2_delnegro.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leeper, Eric M. & Zha, Tao, 2003. "Modest policy interventions," Journal of Monetary Economics, Elsevier, vol. 50(8), pages 1673-1700, November.
    2. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    3. Don Harding & Adrian Pagan, 1999. "Knowing the Cycle," Melbourne Institute Working Paper Series wp1999n12, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    4. Estrella, Arturo & Hardouvelis, Gikas A, 1991. "The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    5. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
    6. John C. Robertson & Ellis W. Tallman, 1999. "Vector autoregressions: forecasting and reality," Economic Review, Federal Reserve Bank of Atlanta, vol. 84(Q1), pages 4-18.
    7. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    8. Tao Zha, 1998. "A dynamic multivariate model for use in formulating policy," Economic Review, Federal Reserve Bank of Atlanta, vol. 83(Q 1), pages 16-29.
    9. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1, September.
    10. Diebold, Francis X & Rudebusch, Glenn D, 1989. "Scoring the Leading Indicators," The Journal of Business, University of Chicago Press, vol. 62(3), pages 369-391, July.
    11. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    12. Daniel M. Chin & John F. Geweke & Preston J. Miller, 2000. "Predicting turning points," Staff Report 267, Federal Reserve Bank of Minneapolis.
    13. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    14. Andrew J. Filardo, 1999. "How reliable are recession prediction models?," Economic Review, Federal Reserve Bank of Kansas City, vol. 84(Q II), pages 35-55.
    15. Neftici, Salih N., 1982. "Optimal prediction of cyclical downturns," Journal of Economic Dynamics and Control, Elsevier, vol. 4(1), pages 225-241, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Donna K. Ginther & Madeline Zavodny, 2001. "The Beige Book: Timely information on the regional economy," Economic Review, Federal Reserve Bank of Atlanta, vol. 86(Q3), pages 19-29.
    2. Francis Bismans & Reynald Majetti, 2013. "Forecasting recessions using financial variables: the French case," Empirical Economics, Springer, vol. 44(2), pages 419-433, April.
    3. Moneta, Fabio, 2003. "Does the yield spread predict recessions in the euro area?," Working Paper Series 294, European Central Bank.
    4. Rangan Gupta & Sonali Das, 2010. "Predicting Downturns in the US Housing Market: A Bayesian Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 41(3), pages 294-319, October.
    5. Das, Sonali & Gupta, Rangan & Kabundi, Alain, 2009. "Could we have predicted the recent downturn in the South African housing market?," Journal of Housing Economics, Elsevier, vol. 18(4), pages 325-335, December.
    6. Wh Boshoff, 2005. "The Properties Of Cycles In South African Financial Variables And Their Relation To The Business Cycle," South African Journal of Economics, Economic Society of South Africa, vol. 73(4), pages 694-709, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    2. Diebold, Francis X & Rudebusch, Glenn D, 1996. "Measuring Business Cycles: A Modern Perspective," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 67-77, February.
    3. George Athanasopoulos & Heather M. Anderson & Farshid Vahid, 2007. "Nonlinear autoregressive leading indicator models of output in G-7 countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 63-87.
    4. Qi, Min, 2001. "Predicting US recessions with leading indicators via neural network models," International Journal of Forecasting, Elsevier, vol. 17(3), pages 383-401.
    5. Carriero, Andrea & Marcellino, Massimiliano, 2007. "A comparison of methods for the construction of composite coincident and leading indexes for the UK," International Journal of Forecasting, Elsevier, vol. 23(2), pages 219-236.
    6. Franck Sédillot, 2001. "La pente des taux contient-elle de l'information sur l'activité économique future ?," Economie & Prévision, La Documentation Française, vol. 147(1), pages 141-157.
    7. Ang, Andrew & Piazzesi, Monika & Wei, Min, 2006. "What does the yield curve tell us about GDP growth?," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 359-403.
    8. Leeper, Eric M. & Zha, Tao, 2003. "Modest policy interventions," Journal of Monetary Economics, Elsevier, vol. 50(8), pages 1673-1700, November.
    9. Mili, Mehdi & Sahut, Jean-Michel & Teulon, Frédéric, 2012. "Non linear and asymmetric linkages between real growth in the Euro area and global financial market conditions: New evidence," Economic Modelling, Elsevier, vol. 29(3), pages 734-741.
    10. Aastveit, Knut Are & Anundsen, André K. & Herstad, Eyo I., 2019. "Residential investment and recession predictability," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1790-1799.
    11. Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2018. "Macroeconomic Nowcasting and Forecasting with Big Data," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 615-643, August.
    12. Maximo Camacho & Gabriel Perez-Quiros, 2002. "This is what the leading indicators lead," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(1), pages 61-80.
    13. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    14. Fernandez-Perez, Adrian & Fernández-Rodríguez, Fernando & Sosvilla-Rivero, Simón, 2014. "The term structure of interest rates as predictor of stock returns: Evidence for the IBEX 35 during a bear market," International Review of Economics & Finance, Elsevier, vol. 31(C), pages 21-33.
    15. Francis X. Diebold, 1998. "The Past, Present, and Future of Macroeconomic Forecasting," Journal of Economic Perspectives, American Economic Association, vol. 12(2), pages 175-192, Spring.
    16. Kholodilin, Konstantin A. & Yao, Vincent W., 2005. "Measuring and predicting turning points using a dynamic bi-factor model," International Journal of Forecasting, Elsevier, vol. 21(3), pages 525-537.
    17. Ahrens, R., 2002. "Predicting recessions with interest rate spreads: a multicountry regime-switching analysis," Journal of International Money and Finance, Elsevier, vol. 21(4), pages 519-537, August.
    18. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    19. Francis X. Diebold & Glenn D. Rudebusch, 2001. "Five questions about business cycles," Economic Review, Federal Reserve Bank of San Francisco, pages 1-15.
    20. Chauvet, Marcelle, 2002. "The Brazilian Business and Growth Cycles," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 56(1), January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedaer:y:2001:i:q2:p:1-12:n:v.86no.2. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/frbatus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/frbatus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.