IDEAS home Printed from https://ideas.repec.org/a/fau/fauart/v68y2018i3p268-293.html
   My bibliography  Save this article

Effects of Macroeconomic Indicators on the Financial Markets Interrelations

Author

Listed:
  • Anna Czapkiewicz

    () (Faculty of Management, AGH University of Science and Technology, Poland)

  • Pawel Jamer

    (Department of Econometrics and Statistics, Warsaw University of Life Sciences, Poland)

  • Joanna Landmesser

    (Department of Econometrics and Statistics, Warsaw University of Life Sciences, Poland)

Abstract

Analyses of financial market interrelationships are important for effective portfolio diversification. The interdependencies between markets are stronger during turbulent times on financial markets than during periods of calm. This fact was especially evident during the global crisis. So, the predictability of stock return interrelationships is a topic discussed most-frequently in empirical studies. In this paper, the role of macroeconomics indicators in the dynamic of interrelationships between financial markets will be considered. Effects of the unemployment rate, CPI, long-term interest rate, and industrial production on the comovement between markets from the G6 group will be verified. For this purpose, the Markov-switching copula model with time-varying matrix transition probability (TVPMS) will be adapted. It has been found that the unemployment rate and long-term interest rate are important factors for interrelationships between the Polish market and the developed market from Germany, France or Italy. The long-term interest rate appears to be important for interrelationships between the Poland and British market and between some developed markets.

Suggested Citation

  • Anna Czapkiewicz & Pawel Jamer & Joanna Landmesser, 2018. "Effects of Macroeconomic Indicators on the Financial Markets Interrelations," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 68(3), pages 268-293, July.
  • Handle: RePEc:fau:fauart:v:68:y:2018:i:3:p:268-293
    as

    Download full text from publisher

    File URL: http://journal.fsv.cuni.cz/storage/1410_267_292_czapkiewicz_final_issue_3_2018.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. King, Mervyn A & Wadhwani, Sushil, 1990. "Transmission of Volatility between Stock Markets," Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 5-33.
    2. Andrew Ang & Geert Bekaert, 2002. "International Asset Allocation With Regime Shifts," Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1137-1187.
    3. Francois Chesnay & Eric Jondeau, 2001. "Does Correlation Between Stock Returns Really Increase During Turbulent Periods?," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 30(1), pages 53-80, February.
    4. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    5. Voronkova, Svitlana, 2004. "Equity market integration in Central European emerging markets: A cointegration analysis with shifting regimes," International Review of Financial Analysis, Elsevier, vol. 13(5), pages 633-647.
    6. Pelletier, Denis, 2006. "Regime switching for dynamic correlations," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 445-473.
    7. Longin, Francois & Solnik, Bruno, 1995. "Is the correlation in international equity returns constant: 1960-1990?," Journal of International Money and Finance, Elsevier, vol. 14(1), pages 3-26, February.
    8. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    9. Chen, Runquan, 2009. "Regime switching in volatilities and correlation between stock and bond markets," LSE Research Online Documents on Economics 29306, London School of Economics and Political Science, LSE Library.
    10. Kristin J. Forbes & Menzie D. Chinn, 2004. "A Decomposition of Global Linkages in Financial Markets Over Time," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 705-722, August.
    11. Balázs Égert & Evžen Kočenda, 2011. "Time-varying synchronization of European stock markets," Empirical Economics, Springer, vol. 40(2), pages 393-407, April.
    12. White, Halbert & Domowitz, Ian, 1984. "Nonlinear Regression with Dependent Observations," Econometrica, Econometric Society, vol. 52(1), pages 143-161, January.
    13. Filardo, Andrew J, 1994. "Business-Cycle Phases and Their Transitional Dynamics," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 299-308, July.
    14. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    15. Okimoto, Tatsuyoshi, 2008. "New Evidence of Asymmetric Dependence Structures in International Equity Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 43(03), pages 787-815, September.
    16. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    17. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    18. Chang, Kuang-Liang, 2009. "Do macroeconomic variables have regime-dependent effects on stock return dynamics? Evidence from the Markov regime switching model," Economic Modelling, Elsevier, vol. 26(6), pages 1283-1299, November.
    19. Kim, Chang-Jin & Piger, Jeremy & Startz, Richard, 2008. "Estimation of Markov regime-switching regression models with endogenous switching," Journal of Econometrics, Elsevier, vol. 143(2), pages 263-273, April.
    20. Colacito, Riccardo & Engle, Robert F. & Ghysels, Eric, 2011. "A component model for dynamic correlations," Journal of Econometrics, Elsevier, vol. 164(1), pages 45-59, September.
    21. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    22. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
    23. Silva Filho, Osvaldo Candido da & Ziegelmann, Flavio Augusto & Dueker, Michael J., 2012. "Modeling dependence dynamics through copulas with regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 346-356.
    24. King, Mervyn & Sentana, Enrique & Wadhwani, Sushil, 1994. "Volatility and Links between National Stock Markets," Econometrica, Econometric Society, vol. 62(4), pages 901-933, July.
    25. Egert, Balazs & Kocenda, Evzen, 2007. "Interdependence between Eastern and Western European stock markets: Evidence from intraday data," Economic Systems, Elsevier, vol. 31(2), pages 184-203, June.
    26. Rodriguez, Juan Carlos, 2007. "Measuring financial contagion: A Copula approach," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 401-423, June.
    27. Kim, Ki-ho, 2003. "Dollar exchange rate and stock price: evidence from multivariate cointegration and error correction model," Review of Financial Economics, Elsevier, vol. 12(3), pages 301-313.
    28. Anna CZAPKIEWICZ & Pawel MAJDOSZ, 2014. "Grouping Stock Markets with Time-Varying Copula-GARCH Model," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 64(2), pages 144-159, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    interrelations; macroeconomic indicators; G6; financial markets; TVTMP model;

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fau:fauart:v:68:y:2018:i:3:p:268-293. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lenka Herrmannova). General contact details of provider: http://edirc.repec.org/data/icunicz.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.