IDEAS home Printed from https://ideas.repec.org/a/eme/imefmp/v5y2012i4p321-339.html
   My bibliography  Save this article

Modelling the currency in circulation for the State of Qatar

Author

Listed:
  • Faruk Balli
  • Elsayed Mousa Elsamadisy

Abstract

Purpose - This paper seeks to model the daily and weekly forecasting of the currency in circulation (CIC) for the State of Qatar. Design/methodology/approach - The paper employs linear forecasting models, the regression model and the seasonal ARIMA model to forecast the CIC for Qatar. Findings - Comparing the linear methods, the seasonal ARIMA model provides better estimates for short‐term forecasts. The range of forecast errors for the seasonal ARIMA model forecasts are less than 100 million QR for the short‐term CIC forecasts. Practical implications - The findings of this paper suggest that the CIC in Qatar is in a pattern and it would be easier to forecast the currency in circulation in Qatar economy. Accurate estimates of money market liquidity would help Qatar Central bank, to maintain the price stability in the Qatar economy. Originality/value - This paper forecasts the currency in circulation for the State of Qatar. Additionally, the empirical part of the paper compares the different methodologies find the appropriate model for the CIC for the state of Qatar.

Suggested Citation

  • Faruk Balli & Elsayed Mousa Elsamadisy, 2012. "Modelling the currency in circulation for the State of Qatar," International Journal of Islamic and Middle Eastern Finance and Management, Emerald Group Publishing Limited, vol. 5(4), pages 321-339, November.
  • Handle: RePEc:eme:imefmp:v:5:y:2012:i:4:p:321-339
    DOI: 10.1108/17538391211282827
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/17538391211282827/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/17538391211282827/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/17538391211282827?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alberto Cabrero & Gonzalo Camba-Mendez & Astrid Hirsch & Fernando Nieto, 2009. "Modelling the daily banknotes in circulation in the context of the liquidity management of the European Central Bank," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(3), pages 194-217.
    2. Naoto Kunitomo & Makoto Takaoka, 2002. "On RegARIMA Model, RegSSARMA Model and Seasonality," CIRJE F-Series CIRJE-F-146, CIRJE, Faculty of Economics, University of Tokyo.
    3. Marek Hlavacek & Michael Konak & Josef Cada, 2005. "The Application of Structured Feedforward Neural Networks to the Modelling of Daily Series of Currency in Circulation," Working Papers 2005/11, Czech National Bank, Research and Statistics Department.
    4. Riaz Riazuddin & Mahmood ul Hasan Khan, 2005. "Detection and Forecasting of Islamic Calendar Effects in Time series Data," SBP Research Bulletin, State Bank of Pakistan, Research Department, vol. 1, pages 25-34.
    5. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    6. William A Allen, 2004. "Implementing Monetary Policy," Lectures, Centre for Central Banking Studies, Bank of England, number 4, April.
    7. Maroje Lang & Davor Kunovac & Silvio Basač & Željka Štaudinger, 2008. "Modelling of Currency outside Banks in Croatia," Working Papers 17, The Croatian National Bank, Croatia.
    8. Bindseil, Ulrich & Seitz, Franz, 2001. "The supply and demand for Eurosystem deposits - The first 18 months," Working Paper Series 44, European Central Bank.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdul Hadi Abdul Rahim & Muhammad Hafizuddin Hussin & Mohammad Amnan Awang Ali & Muhammad Hanis Roslan & Haslina Hassan & Radhwa Abu Bakar, 2024. "Developing Arabiyatuna Board Game for Engaging Students’ Knowledge Towards the Arabic Language & Culture," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(3s), pages 1325-1330, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariam El Hamiani Khatat, 2018. "Monetary Policy and Models of Currency Demand," IMF Working Papers 2018/028, International Monetary Fund.
    2. Maroje Lang & Davor Kunovac & Silvio Basač & Željka Štaudinger, 2008. "Modelling of Currency outside Banks in Croatia," Working Papers 17, The Croatian National Bank, Croatia.
    3. Alberto Cabrero & Gonzalo Camba-Mendez & Astrid Hirsch & Fernando Nieto, 2009. "Modelling the daily banknotes in circulation in the context of the liquidity management of the European Central Bank," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(3), pages 194-217.
    4. Michael Wagner, 2010. "Forecasting Daily Demand in Cash Supply Chains," American Journal of Economics and Business Administration, Science Publications, vol. 2(4), pages 377-383, November.
    5. Mr. Romain M Veyrune & Shaoyu Guo, 2019. "Autonomous Factor Forecast Quality: The Case of the Eurosystem," IMF Working Papers 2019/296, International Monetary Fund.
    6. Fischer, Björn & Köhler-Ulbrich, Petra & Seitz, Franz, 2004. "The demand for euro area currencies: past, present and future," Working Paper Series 330, European Central Bank.
    7. Hauzenberger, Niko & Huber, Florian & Klieber, Karin & Marcellino, Massimiliano, 2025. "Bayesian neural networks for macroeconomic analysis," Journal of Econometrics, Elsevier, vol. 249(PC).
    8. João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020. "Nowcasting East German GDP growth: a MIDAS approach," Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
    9. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    10. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
    11. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    12. Vitek, Francis, 2006. "Measuring the Stance of Monetary Policy in a Small Open Economy: A Dynamic Stochastic General Equilibrium Approach," MPRA Paper 802, University Library of Munich, Germany.
    13. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    14. Faria, Gonçalo & Verona, Fabio, 2023. "Forecast combination in the frequency domain," Bank of Finland Research Discussion Papers 1/2023, Bank of Finland.
    15. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    16. Dal Bianco, Marcos & Camacho, Maximo & Perez Quiros, Gabriel, 2012. "Short-run forecasting of the euro-dollar exchange rate with economic fundamentals," Journal of International Money and Finance, Elsevier, vol. 31(2), pages 377-396.
    17. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    18. Diongue, Abdou Kâ & Guégan, Dominique & Vignal, Bertrand, 2009. "Forecasting electricity spot market prices with a k-factor GIGARCH process," Applied Energy, Elsevier, vol. 86(4), pages 505-510, April.
    19. Bentes, Sonia R. & Menezes, Rui, 2013. "On the predictability of realized volatility using feasible GLS," Journal of Asian Economics, Elsevier, vol. 28(C), pages 58-66.
    20. Hayashi, Masayoshi, 2014. "Forecasting welfare caseloads: The case of the Japanese public assistance program," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 105-114.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:imefmp:v:5:y:2012:i:4:p:321-339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.