IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v99y2020icp186-202.html
   My bibliography  Save this article

Exploring the reasons for efficiency in Spanish airports

Author

Listed:
  • Ripoll-Zarraga, Ane Elixabete
  • Mar-Molinero, Cecilio

Abstract

In recent years the Spanish government has invested significantly in the infrastructure of airports. It is not clear if this investment has been efficiently applied. Airports operate as independent profit centres but are under the control of a central authority, AENA. We study Spanish airport efficiency using Data Envelopment Analysis (DEA). In standard studies, DEA summarises the efficiency of a unit by means of a single number. Here we go beyond the efficiency score by combining DEA with multivariate analysis techniques. In this way we are able to establish why a particular airport reaches a given efficiency level, and what is its approach to the use of resources and the achievement of results. The combined use of DEA and multivariate statistical analysis overcomes the well-known zero weights problem and permits the visualisation of the results and the addition of qualitative information to the interpretation of the results. On this basis, for each unit of assessment (airport), individual managerial recommendations are drawn. Additionally, the visualisation allows differentiating between units more efficient in certain operations compared to others (specialisation).

Suggested Citation

  • Ripoll-Zarraga, Ane Elixabete & Mar-Molinero, Cecilio, 2020. "Exploring the reasons for efficiency in Spanish airports," Transport Policy, Elsevier, vol. 99(C), pages 186-202.
  • Handle: RePEc:eee:trapol:v:99:y:2020:i:c:p:186-202
    DOI: 10.1016/j.tranpol.2020.08.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X1830249X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2020.08.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leopold Simar & Paul Wilson, 2000. "A general methodology for bootstrapping in non-parametric frontier models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(6), pages 779-802.
    2. Léopold Simar & Paul Wilson, 2000. "Statistical Inference in Nonparametric Frontier Models: The State of the Art," Journal of Productivity Analysis, Springer, vol. 13(1), pages 49-78, January.
    3. Inmaculada Sirvent & José L. Ruiz & Fernando Borrás & Jesús T. Pastor, 2005. "A Monte Carlo Evaluation Of Several Tests For The Selection Of Variables In Dea Models," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 325-343.
    4. Martín, Juan Carlos & Román, Concepción & Voltes-Dorta, Augusto, 2011. "Scale economies and marginal costs in Spanish airports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(2), pages 238-248, March.
    5. Ripoll-Zarraga, Ane Elixabete & Raya, Josep Maria, 2020. "Tourism indicators and airports' technical efficiency," Annals of Tourism Research, Elsevier, vol. 80(C).
    6. Asmild, Mette & Pastor, Jesús T., 2010. "Slack free MEA and RDM with comprehensive efficiency measures," Omega, Elsevier, vol. 38(6), pages 475-483, December.
    7. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    8. Jesús T. Pastor & JosÉ L. Ruiz & Inmaculada Sirvent, 2002. "A Statistical Test for Nested Radial Dea Models," Operations Research, INFORMS, vol. 50(4), pages 728-735, August.
    9. F Pedraja-Chaparro & J Salinas-Jiménez & P Smith, 1999. "On the quality of the data envelopment analysis model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(6), pages 636-644, June.
    10. Adler, Nicole & Ülkü, Tolga & Yazhemsky, Ekaterina, 2013. "Small regional airport sustainability: Lessons from benchmarking," Journal of Air Transport Management, Elsevier, vol. 33(C), pages 22-31.
    11. William Cooper & Kyung Park & Jesus Pastor, 1999. "RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA," Journal of Productivity Analysis, Springer, vol. 11(1), pages 5-42, February.
    12. Assaf, A., 2010. "Bootstrapped scale efficiency measures of UK airports," Journal of Air Transport Management, Elsevier, vol. 16(1), pages 42-44.
    13. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
    14. Dyson, R. G. & Allen, R. & Camanho, A. S. & Podinovski, V. V. & Sarrico, C. S. & Shale, E. A., 2001. "Pitfalls and protocols in DEA," European Journal of Operational Research, Elsevier, vol. 132(2), pages 245-259, July.
    15. Fernandes, Elton & Pacheco, R. R., 2002. "Efficient use of airport capacity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(3), pages 225-238, March.
    16. I. T. Jolliffe, 1972. "Discarding Variables in a Principal Component Analysis. I: Artificial Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 21(2), pages 160-173, June.
    17. Coto-Millán, Pablo & Casares-Hontañón, Pedro & Inglada, Vicente & Agüeros, Manuel & Pesquera, Miguel à ngel & Badiola, Alfonso, 2014. "Small is beautiful? The impact of economic crisis, low cost carriers, and size on efficiency in Spanish airports (2009–2011)," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 34-41.
    18. Gillen, David & Lall, Ashish, 1997. "Developing measures of airport productivity and performance: an application of data envelopment analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 33(4), pages 261-273, December.
    19. C Serrano Cinca & C Mar Molinero, 2004. "Selecting DEA specifications and ranking units via PCA," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(5), pages 521-528, May.
    20. Joseph Sarkis & Srinivas Talluri, 2004. "Ecoefficiency Measurement Using Data Envelopment Analysis: Research And Practitioner Issues," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 91-123.
    21. Tapiador, Francisco J. & Mateos, Ana & Martí-Henneberg, Jordi, 2008. "The geographical efficiency of Spain's regional airports: A quantitative analysis," Journal of Air Transport Management, Elsevier, vol. 14(4), pages 205-212.
    22. Brockett, P. L. & Charnes, A. & Cooper, W. W. & Huang, Z. M. & Sun, D. B., 1997. "Data transformations in DEA cone ratio envelopment approaches for monitoring bank performances," European Journal of Operational Research, Elsevier, vol. 98(2), pages 250-268, April.
    23. Juan Martín & Concepción Román & Augusto Voltes-Dorta, 2009. "A stochastic frontier analysis to estimate the relative efficiency of Spanish airports," Journal of Productivity Analysis, Springer, vol. 31(3), pages 163-176, June.
    24. Robert Russell, R., 1985. "Measures of technical efficiency," Journal of Economic Theory, Elsevier, vol. 35(1), pages 109-126, February.
    25. Tovar, Beatriz & Martín-Cejas, Roberto Rendeiro, 2009. "Are outsourcing and non-aeronautical revenues important drivers in the efficiency of Spanish airports?," Journal of Air Transport Management, Elsevier, vol. 15(5), pages 217-220.
    26. Pels, Eric & Nijkamp, Peter & Rietveld, Piet, 2001. "Relative efficiency of European airports," Transport Policy, Elsevier, vol. 8(3), pages 183-192, July.
    27. Bazargan, Massoud & Vasigh, Bijan, 2003. "Size versus efficiency: a case study of US commercial airports," Journal of Air Transport Management, Elsevier, vol. 9(3), pages 187-193.
    28. Malcolm Abbott & Su Wu, 2002. "Total Factor Productivity and Efficiency of Australian Airports," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 35(3), pages 244-260, September.
    29. Sagarra, Marti & Mar-Molinero, Cecilio & Agasisti, Tommaso, 2017. "Exploring the efficiency of Mexican universities: Integrating Data Envelopment Analysis and Multidimensional Scaling," Omega, Elsevier, vol. 67(C), pages 123-133.
    30. Russell, R. Robert, 1985. "On the Axiomatic Approach to the Measurement of Technical Efficiency," Working Papers 85-33, C.V. Starr Center for Applied Economics, New York University.
    31. Ane Elixabete Ripoll-Zarraga & Sebastián Lozano, 2020. "A centralised DEA approach to resource reallocation in Spanish airports," Annals of Operations Research, Springer, vol. 288(2), pages 701-732, May.
    32. Rolf Färe & Shawna Grosskopf, 2000. "Theory and Application of Directional Distance Functions," Journal of Productivity Analysis, Springer, vol. 13(2), pages 93-103, March.
    33. Coto-Millán, Pablo & Inglada, Vicente & Fernández, Xose Luis & Inglada-Pérez, Lucía & Pesquera, Miguel Ángel, 2016. "The “effect procargo” on technical and scale efficiency at airports: The case of Spanish airports (2009–2011)," Utilities Policy, Elsevier, vol. 39(C), pages 29-35.
    34. Kaoru Tone, 2001. "On Returns to Scale under Weight Restrictions in Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 16(1), pages 31-47, July.
    35. Tovar, Beatriz & Martín-Cejas, Roberto Rendeiro, 2010. "Technical efficiency and productivity changes in Spanish airports: A parametric distance functions approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(2), pages 249-260, March.
    36. Juan Martín & Concepción Román, 2006. "A Benchmarking Analysis of Spanish Commercial Airports. A Comparison Between SMOP and DEA Ranking Methods," Networks and Spatial Economics, Springer, vol. 6(2), pages 111-134, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Güner, Samet & Seçkin Codal, Keziban, 2022. "Endogenous and exogenous sources of efficiency in the management of Turkish airports," Utilities Policy, Elsevier, vol. 76(C).
    2. Mehdi Shamohammadi & Yonghwa Park & Jong Hae Choi & Oh Kyoung Kwon, 2022. "Exploring the Performance of International Airports in the Pre- and Post-COVID-19 Era: Evidence from Incheon International Airport," Sustainability, MDPI, vol. 14(7), pages 1-22, April.
    3. Güner, Samet & İbrahim Cebeci, Halil, 2021. "Multi-period efficiency analysis of major European and Asian airports under fixed proportion technologies," Transport Policy, Elsevier, vol. 107(C), pages 24-42.
    4. Ripoll-Zarraga, Ane Elixabete & Huderek-Glapska, Sonia, 2021. "Airports’ managerial human capital, ownership, and efficiency," Journal of Air Transport Management, Elsevier, vol. 92(C).
    5. Fernández, Xose Luis & Gundelfinger, Javier & Coto-Millán, Pablo, 2022. "The impact of logistics and intermodality on airport efficiency," Transport Policy, Elsevier, vol. 124(C), pages 233-239.
    6. Cifuentes-Faura, Javier & Faura-Martínez, Ursula, 2023. "Measuring Spanish airport performance: A bootstrap data envelopment analysis of efficiency," Utilities Policy, Elsevier, vol. 80(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adler, Nicole & Ülkü, Tolga & Yazhemsky, Ekaterina, 2013. "Small regional airport sustainability: Lessons from benchmarking," Journal of Air Transport Management, Elsevier, vol. 33(C), pages 22-31.
    2. Fernández, Xose Luis & Gundelfinger, Javier & Coto-Millán, Pablo, 2022. "The impact of logistics and intermodality on airport efficiency," Transport Policy, Elsevier, vol. 124(C), pages 233-239.
    3. Ripoll-Zarraga, Ane Elixabete & Raya, Josep Maria, 2020. "Tourism indicators and airports' technical efficiency," Annals of Tourism Research, Elsevier, vol. 80(C).
    4. Örkcü, H. Hasan & Balıkçı, Cemal & Dogan, Mustafa Isa & Genç, Aşır, 2016. "An evaluation of the operational efficiency of turkish airports using data envelopment analysis and the Malmquist productivity index: 2009–2014 case," Transport Policy, Elsevier, vol. 48(C), pages 92-104.
    5. Voltes-Dorta, Augusto & Pagliari, Romano, 2012. "The impact of recession on airports' cost efficiency," Transport Policy, Elsevier, vol. 24(C), pages 211-222.
    6. Huynh, Triet Minh & Kim, Gyuseung & Ha, Hun-Koo, 2020. "Comparative analysis of efficiency for major Southeast Asia airports: A two-stage approach," Journal of Air Transport Management, Elsevier, vol. 89(C).
    7. Chaouk, Mohammed & Pagliari, Dr Romano & Moxon, Richard, 2020. "The impact of national macro-environment exogenous variables on airport efficiency," Journal of Air Transport Management, Elsevier, vol. 82(C).
    8. Fernández, Xosé Luis & Coto-Millán, Pablo & Díaz-Medina, Benito, 2018. "The impact of tourism on airport efficiency: The Spanish case," Utilities Policy, Elsevier, vol. 55(C), pages 52-58.
    9. Adler, Nicole & Yazhemsky, Ekaterina, 2010. "Improving discrimination in data envelopment analysis: PCA-DEA or variable reduction," European Journal of Operational Research, Elsevier, vol. 202(1), pages 273-284, April.
    10. Coto-Millán, Pablo & Casares-Hontañón, Pedro & Inglada, Vicente & Agüeros, Manuel & Pesquera, Miguel à ngel & Badiola, Alfonso, 2014. "Small is beautiful? The impact of economic crisis, low cost carriers, and size on efficiency in Spanish airports (2009–2011)," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 34-41.
    11. Ahn, Young-Hyo & Min, Hokey, 2014. "Evaluating the multi-period operating efficiency of international airports using data envelopment analysis and the Malmquist productivity index," Journal of Air Transport Management, Elsevier, vol. 39(C), pages 12-22.
    12. Fabio Carlucci & Andrea Cirà & Paolo Coccorese, 2018. "Measuring and Explaining Airport Efficiency and Sustainability: Evidence from Italy," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    13. Sebastian Kohl & Jan Schoenfelder & Andreas Fügener & Jens O. Brunner, 2019. "The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals," Health Care Management Science, Springer, vol. 22(2), pages 245-286, June.
    14. Merkert, Rico & Assaf, A. George, 2015. "Using DEA models to jointly estimate service quality perception and profitability – Evidence from international airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 42-50.
    15. Myung Je Lee & Changhee Kim, 2018. "A network DEA aeronautical and non-aeronautical production model: an application to South Korea airports," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-12, December.
    16. Lai, Po‐Lin & Potter, Andrew & Beynon, Malcolm & Beresford, Anthony, 2015. "Evaluating the efficiency performance of airports using an integrated AHP/DEA-AR technique," Transport Policy, Elsevier, vol. 42(C), pages 75-85.
    17. Sebastián Lozano & Ester Gutiérrez, 2011. "Efficiency Analysis and Target Setting of Spanish Airports," Networks and Spatial Economics, Springer, vol. 11(1), pages 139-157, March.
    18. Uludağ, Ahmet Serhat, 2020. "Measuring the productivity of selected airports in Turkey," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    19. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    20. Shojaei, Payam & Seyed Haeri, Seyed Amin & Mohammadi, Sahar, 2018. "Airports evaluation and ranking model using Taguchi loss function, best-worst method and VIKOR technique," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 4-13.

    More about this item

    Keywords

    Data envelopment analysis (DEA); Multidimensional scaling (MDS); Visualisation; Technical efficiency; Benchmarking; Spanish airport-system;
    All these keywords.

    JEL classification:

    • H54 - Public Economics - - National Government Expenditures and Related Policies - - - Infrastructures

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:99:y:2020:i:c:p:186-202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.