IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v164y2025icp178-195.html
   My bibliography  Save this article

The performance and input congestion of 19 listed port companies in China

Author

Listed:
  • Fang, Zhong
  • Luo, Na
  • Xiao, Qiqi
  • Chiu, Yung-ho

Abstract

In the highly competitive environment of the global port industry, performance measurement is a powerful management tool for port operators, and input congestion is one key factor affecting performance. Our research offers reference information for optimizing resource allocation, reducing input congestion, and enhancing the competitiveness of Chinese port companies. We extend the basic WY-TS (Wan and Yan, 2004; Tone and Sahoo, 2004) method to a dynamic two-stage model that considers undesirable outputs, marking the first application of the stage input congestion method across multiple decision-making units. Our study yields the following findings. First, only Nanjing Port and Yantian Port are consistently efficient throughout the study period, and sustainability is currently the most significant barrier to improving overall performance for Chinese port companies. Second, input congestion is primarily observed in large enterprises. We believe that the pursuit of economies of scale does not apply to all inefficient companies. For large enterprises, scientific formulation of expansion strategies is more important. Third, port companies in Jiangsu, Guangdong, Guangxi, and Hebei experience more severe labor congestion, while those in northern provinces face more significant energy congestion. Fourth, the efficiency of Chinese port companies in transitioning from production to profitability and sustainability is low, exhibiting overcapacity. Fifth, the aggravating impact of the COVID-19 pandemic on input congestion and production efficiency in Chinese port companies showed a delay. Based on these findings, this paper presents specific recommendations for optimizing resource allocation in port companies.

Suggested Citation

  • Fang, Zhong & Luo, Na & Xiao, Qiqi & Chiu, Yung-ho, 2025. "The performance and input congestion of 19 listed port companies in China," Transport Policy, Elsevier, vol. 164(C), pages 178-195.
  • Handle: RePEc:eee:trapol:v:164:y:2025:i:c:p:178-195
    DOI: 10.1016/j.tranpol.2025.01.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X25000526
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2025.01.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Noura, A.A. & Hosseinzadeh Lotfi, F. & Jahanshahloo, G.R. & Rashidi, S. Fanati & Parker, Barnett R., 2010. "A new method for measuring congestion in data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 44(4), pages 240-246, December.
    2. Wu, Jie & An, Qingxian & Xiong, Beibei & Chen, Ya, 2013. "Congestion measurement for regional industries in China: A data envelopment analysis approach with undesirable outputs," Energy Policy, Elsevier, vol. 57(C), pages 7-13.
    3. Clark, Ximena & Dollar, David & Micco, Alejandro, 2004. "Port efficiency, maritime transport costs, and bilateral trade," Journal of Development Economics, Elsevier, vol. 75(2), pages 417-450, December.
    4. Tsutsui, Miki & Goto, Mika, 2009. "A multi-division efficiency evaluation of U.S. electric power companies using a weighted slacks-based measure," Socio-Economic Planning Sciences, Elsevier, vol. 43(3), pages 201-208, September.
    5. Tone, Kaoru & Sahoo, Biresh K., 2004. "Degree of scale economies and congestion: A unified DEA approach," European Journal of Operational Research, Elsevier, vol. 158(3), pages 755-772, November.
    6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    7. Daganzo, Carlos F., 1989. "The crane scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 23(3), pages 159-175, June.
    8. Sun, Jiasen & Yuan, Yang & Yang, Rui & Ji, Xiang & Wu, Jie, 2017. "Performance evaluation of Chinese port enterprises under significant environmental concerns: An extended DEA-based analysis," Transport Policy, Elsevier, vol. 60(C), pages 75-86.
    9. Gong, Xiaoxing & Wu, Xiaofan & Luo, Meifeng, 2019. "Company performance and environmental efficiency: A case study for shipping enterprises," Transport Policy, Elsevier, vol. 82(C), pages 96-106.
    10. Tan, Yafei & Zhu, Zhaohui, 2022. "The effect of ESG rating events on corporate green innovation in China: The mediating role of financial constraints and managers' environmental awareness," Technology in Society, Elsevier, vol. 68(C).
    11. Lu, Juan & Li, He, 2024. "The impact of ESG ratings on low carbon investment: Evidence from renewable energy companies," Renewable Energy, Elsevier, vol. 223(C).
    12. Zhou, Yutao & Li, Zhenfu & Duan, Wei & Deng, Zhao, 2023. "The impact of provincial port integration on port efficiency: Empirical evidence from China's Coastal Provinces," Journal of Transport Geography, Elsevier, vol. 108(C).
    13. Cooper, W. W. & Deng, Honghui & Huang, Zhimin M. & Li, Susan X., 2002. "A one-model approach to congestion in data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 36(4), pages 231-238, December.
    14. Wei, Quanling & Yan, Hong, 2004. "Congestion and returns to scale in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 153(3), pages 641-660, March.
    15. Chen, C. S. & Lee, S. M. & Shen, Q. S., 1995. "An analytical model for the container loading problem," European Journal of Operational Research, Elsevier, vol. 80(1), pages 68-76, January.
    16. Pablo Coto-Millan & Jose Banos-Pino & Ana Rodriguez-Alvarez, 2000. "Economic efficiency in Spanish ports: some empirical evidence," Maritime Policy & Management, Taylor & Francis Journals, vol. 27(2), pages 169-174, April.
    17. Carlos Pestana Barros & Manolis Athanassiou, 2004. "Efficiency in European Seaports with DEA: Evidence from Greece and Portugal," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 6(2), pages 122-140, June.
    18. Sueyoshi, Toshiyuki & Sekitani, Kazuyuki, 2009. "DEA congestion and returns to scale under an occurrence of multiple optimal projections," European Journal of Operational Research, Elsevier, vol. 194(2), pages 592-607, April.
    19. Cooper, William W. & Seiford, Lawrence M. & Zhu, Joe, 2000. "A unified additive model approach for evaluating inefficiency and congestion with associated measures in DEA," Socio-Economic Planning Sciences, Elsevier, vol. 34(1), pages 1-25, March.
    20. Cooper, W. W. & Deng, Honghui & Gu, Bisheng & Li, Shanling & Thrall, R. M., 2001. "Using DEA to improve the management of congestion in Chinese industries (1981-1997)," Socio-Economic Planning Sciences, Elsevier, vol. 35(4), pages 227-242, December.
    21. Pang, Qinghua & Qiu, Man & Zhang, Lina & Chiu, Yung-ho, 2023. "Congestion effects of energy and capital in China's carbon emission reduction: Evidence from provincial levels," Energy, Elsevier, vol. 274(C).
    22. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Weak and strong disposability vs. natural and managerial disposability in DEA environmental assessment: Comparison between Japanese electric power industry and manufacturing industries," Energy Economics, Elsevier, vol. 34(3), pages 686-699.
    23. Michele Lo Re & Eleonora Veglianti & Fabrizio Parente & Umberto Monarca & Cosimo Magazzino, 2023. "Economic network dynamics: a structural analysis of the international connectivity of Chinese manufacturing firms," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 50(8), pages 1585-1600, February.
    24. Kao, Chiang, 2010. "Congestion measurement and elimination under the framework of data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 123(2), pages 257-265, February.
    25. Mehdiloozad, Mahmood & Zhu, Joe & Sahoo, Biresh K., 2018. "Identification of congestion in data envelopment analysis under the occurrence of multiple projections: A reliable method capable of dealing with negative data," European Journal of Operational Research, Elsevier, vol. 265(2), pages 644-654.
    26. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehdiloozad, Mahmood & Zhu, Joe & Sahoo, Biresh K., 2018. "Identification of congestion in data envelopment analysis under the occurrence of multiple projections: A reliable method capable of dealing with negative data," European Journal of Operational Research, Elsevier, vol. 265(2), pages 644-654.
    2. Jun Wang & Yong Zha, 2014. "Distinguishing Technical Inefficiency from Desirable and Undesirable Congestion with an Application to Regional Industries in China," Sustainability, MDPI, vol. 6(12), pages 1-19, December.
    3. Ren, Xian-tong & Fukuyama, Hirofumi & Yang, Guo-liang, 2022. "Eliminating congestion by increasing inputs in R&D activities of Chinese universities," Omega, Elsevier, vol. 110(C).
    4. Pang, Qinghua & Qiu, Man & Zhang, Lina & Chiu, Yung-ho, 2023. "Congestion effects of energy and capital in China's carbon emission reduction: Evidence from provincial levels," Energy, Elsevier, vol. 274(C).
    5. Chen, Zhenling & Li, Jinkai & Zhao, Weigang & Yuan, Xiao-Chen & Yang, Guo-liang, 2019. "Undesirable and desirable energy congestion measurements for regional coal-fired power generation industry in China," Energy Policy, Elsevier, vol. 125(C), pages 122-134.
    6. Zhang, Yue-Jun & Liu, Jing-Yue & Su, Bin, 2020. "Carbon congestion effects in China's industry: Evidence from provincial and sectoral levels," Energy Economics, Elsevier, vol. 86(C).
    7. Kao, Chiang, 2010. "Congestion measurement and elimination under the framework of data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 123(2), pages 257-265, February.
    8. Saber Saati & Maryam Shadab, 2023. "Exploring congestion in intermediate products by DEA: an application on Iranian cement supply chain," Operational Research, Springer, vol. 23(4), pages 1-32, December.
    9. Yang, Zhuofan & Shi, Yong & Yan, Hong, 2017. "Analysis on pure e-commerce congestion effect, productivity effect and profitability in China," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 35-49.
    10. Hu, Jin-Li & Chang, Ming-Chung & Tsay, Hui-Wen, 2017. "The congestion total-factor energy efficiency of regions in Taiwan," Energy Policy, Elsevier, vol. 110(C), pages 710-718.
    11. Maryam Shadab & Saber Saati & Reza Farzipoor Saen & Mohammad Khoveyni & Amin Mostafaee, 2021. "Detecting congestion in DEA by solving one model," Operations Research and Decisions, Wroclaw University of Science Technology, Faculty of Management, vol. 31, pages 77-96.
    12. F. Wu & P. Zhou & D. Zhou, 2015. "Measuring Energy Congestion in Chinese Industrial Sectors: A Slacks-Based DEA Approach," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 479-494, October.
    13. Maryam Shadab & Saber Saati & Reza Farzipoor Saen & Mohammad Khoveyni & Amin Mostafaee, 2021. "Detecting congestion in DEA by solving one model," Operations Research and Decisions, Wroclaw University of Science Technology, Faculty of Management, vol. 31(1), pages 77-96.
    14. Fang, Lei, 2015. "Congestion measurement in nonparametric analysis under the weakly disposable technology," European Journal of Operational Research, Elsevier, vol. 245(1), pages 203-208.
    15. Liu, Jiaguo & Wang, Xiaoye & Guo, Junyu, 2021. "Port efficiency and its influencing factors in the context of Pilot Free Trade Zones," Transport Policy, Elsevier, vol. 105(C), pages 67-79.
    16. Wei, Quanling & Yan, Hong, 2009. "Weak congestion in output additive data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 43(1), pages 40-54, March.
    17. Xian-tong Ren & Guo-liang Yang, 2024. "Eliminating congestion in China’s papermaking and paper products industry: From both the perspective of increasing and decreasing inputs," Journal of Productivity Analysis, Springer, vol. 61(1), pages 63-82, February.
    18. Alfonso Mendoza-Velázquez & Francisco Benita, 2019. "Efficiency, Productivity, and Congestion Performance: Analysis of the Automotive Cluster in Mexico," Journal of Industry, Competition and Trade, Springer, vol. 19(4), pages 661-678, December.
    19. Tony Flegg & David O. Allen, 2006. "Does it matter How We Measure Congestion?," Working Papers 0614, Department of Accounting, Economics and Finance, Bristol Business School, University of the West of England, Bristol.
    20. Flegg, A.T. & Allen, D.O., 2009. "Congestion in the Chinese automobile and textile industries revisited," Socio-Economic Planning Sciences, Elsevier, vol. 43(3), pages 177-191, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:164:y:2025:i:c:p:178-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.