IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v23y2023i4d10.1007_s12351-023-00800-x.html
   My bibliography  Save this article

Exploring congestion in intermediate products by DEA: an application on Iranian cement supply chain

Author

Listed:
  • Saber Saati

    (Islamic Azad University)

  • Maryam Shadab

    (Islamic Azad University)

Abstract

Evaluating the performance of a supply chain as a decision-making unit (DMU) is a significant topic for many researchers and learners. Presence congestion is one of the key events that results in lower efficiency and performance in a DMU. One of the most suitable methods to explore congestion is data envelopment analysis (DEA). A supply chain may encounter congestion in its inputs or intermediate products or both. Some studies have been conducted to explore the intermediate product congestion through solving network DEA (NDEA) models regardless of the role of intermediate products. In this study, a two-stage series supply chain with separate inputs and outputs for each stage as a DMU is considered. Then, a new linear programming problem is presented to determine extreme efficient supply chain. Since extreme efficient DMUs play an essential role in production technology, we proposed a novel linear programming problem to detect congested extreme efficient supply chain according to their intermediate products' role for the first time. To reach this end, various scenarios that congestion may arise in intermediate products have been identified. And so, for each scenario, a novel linear model was offered to determine congested extreme efficient DMU. According to this method, an extreme efficient DMU under evaluation was removed from the production technology and by comparing it with other units belonging to this technology, the presence of congestion and the status of congestion (strong congestion and weak congestion) in intermediate products were determined. Finally, 15 Iranian supply chains of cement factories have been employed to establish applicability of the suggested models.

Suggested Citation

  • Saber Saati & Maryam Shadab, 2023. "Exploring congestion in intermediate products by DEA: an application on Iranian cement supply chain," Operational Research, Springer, vol. 23(4), pages 1-32, December.
  • Handle: RePEc:spr:operea:v:23:y:2023:i:4:d:10.1007_s12351-023-00800-x
    DOI: 10.1007/s12351-023-00800-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-023-00800-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-023-00800-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kao, Chiang, 2009. "Efficiency decomposition in network data envelopment analysis: A relational model," European Journal of Operational Research, Elsevier, vol. 192(3), pages 949-962, February.
    2. Noura, A.A. & Hosseinzadeh Lotfi, F. & Jahanshahloo, G.R. & Rashidi, S. Fanati & Parker, Barnett R., 2010. "A new method for measuring congestion in data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 44(4), pages 240-246, December.
    3. Yu, Ming-Miin & Lin, Erwin T.J., 2008. "Efficiency and effectiveness in railway performance using a multi-activity network DEA model," Omega, Elsevier, vol. 36(6), pages 1005-1017, December.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Adler, Nicole & Liebert, Vanessa & Yazhemsky, Ekaterina, 2013. "Benchmarking airports from a managerial perspective," Omega, Elsevier, vol. 41(2), pages 442-458.
    6. Zhu, Joe, 2000. "Multi-factor performance measure model with an application to Fortune 500 companies," European Journal of Operational Research, Elsevier, vol. 123(1), pages 105-124, May.
    7. Chen, Yao & Cook, Wade D. & Kao, Chiang & Zhu, Joe, 2013. "Network DEA pitfalls: Divisional efficiency and frontier projection under general network structures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 507-515.
    8. Cooper, W. W. & Deng, Honghui & Huang, Zhimin M. & Li, Susan X., 2002. "A one-model approach to congestion in data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 36(4), pages 231-238, December.
    9. Wei, Quanling & Yan, Hong, 2004. "Congestion and returns to scale in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 153(3), pages 641-660, March.
    10. J S Liu & W-M Lu, 2012. "Network-based method for ranking of efficient units in two-stage DEA models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(8), pages 1153-1164, August.
    11. Sueyoshi, Toshiyuki & Sekitani, Kazuyuki, 2009. "DEA congestion and returns to scale under an occurrence of multiple optimal projections," European Journal of Operational Research, Elsevier, vol. 194(2), pages 592-607, April.
    12. Cooper, William W. & Seiford, Lawrence M. & Zhu, Joe, 2000. "A unified additive model approach for evaluating inefficiency and congestion with associated measures in DEA," Socio-Economic Planning Sciences, Elsevier, vol. 34(1), pages 1-25, March.
    13. Du, Juan & Liang, Liang & Chen, Yao & Cook, Wade D. & Zhu, Joe, 2011. "A bargaining game model for measuring performance of two-stage network structures," European Journal of Operational Research, Elsevier, vol. 210(2), pages 390-397, April.
    14. Chen, Yao & Cook, Wade D. & Li, Ning & Zhu, Joe, 2009. "Additive efficiency decomposition in two-stage DEA," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1170-1176, August.
    15. Tone, Kaoru & Tsutsui, Miki, 2010. "Dynamic DEA: A slacks-based measure approach," Omega, Elsevier, vol. 38(3-4), pages 145-156, June.
    16. Chiou, Yu-Chiun & Lan, Lawrence W. & Yen, Barbara T.H., 2010. "A joint measurement of efficiency and effectiveness for non-storable commodities: Integrated data envelopment analysis approaches," European Journal of Operational Research, Elsevier, vol. 201(2), pages 477-489, March.
    17. Kerstens, Kristiaan & Van de Woestyne, Ignace, 2019. "The Remarkable Incidence of Congestion in Production: A Review, Empirical Illustration, and Research Agenda," Data Envelopment Analysis Journal, now publishers, vol. 4(2), pages 109-147, December.
    18. Khoveyni, Mohammad & Fukuyama, Hirofumi & Eslami, Robabeh & Yang, Guo-liang, 2019. "Variations effect of intermediate products on the second stage in two-stage processes," Omega, Elsevier, vol. 85(C), pages 35-48.
    19. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    20. Mehdiloozad, Mahmood & Zhu, Joe & Sahoo, Biresh K., 2018. "Identification of congestion in data envelopment analysis under the occurrence of multiple projections: A reliable method capable of dealing with negative data," European Journal of Operational Research, Elsevier, vol. 265(2), pages 644-654.
    21. Liang Liang & Wade D. Cook & Joe Zhu, 2008. "DEA models for two‐stage processes: Game approach and efficiency decomposition," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(7), pages 643-653, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    2. Tavakoli, Ibrahim M. & Mostafaee, Amin, 2019. "Free disposal hull efficiency scores of units with network structures," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1027-1036.
    3. Alireza Moradi & Saber Saati & Mehrzad Navabakhsh, 2023. "Genetic algorithms for optimizing two-stage DEA by considering unequal intermediate weights," OPSEARCH, Springer;Operational Research Society of India, vol. 60(3), pages 1202-1217, September.
    4. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    5. Lu, Wen-Min & Kweh, Qian Long & Nourani, Mohammad & Huang, Feng-Wen, 2016. "Evaluating the efficiency of dual-use technology development programs from the R&D and socio-economic perspectives," Omega, Elsevier, vol. 62(C), pages 82-92.
    6. Mehdiloozad, Mahmood & Zhu, Joe & Sahoo, Biresh K., 2018. "Identification of congestion in data envelopment analysis under the occurrence of multiple projections: A reliable method capable of dealing with negative data," European Journal of Operational Research, Elsevier, vol. 265(2), pages 644-654.
    7. Koronakos, Gregory & Sotiros, Dimitris & Despotis, Dimitris K. & Kritikos, Manolis N., 2022. "Fair efficiency decomposition in network DEA: A compromise programming approach," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    8. Maryam Shadab & Saber Saati & Reza Farzipoor Saen & Mohammad Khoveyni & Amin Mostafaee, 2021. "Detecting congestion in DEA by solving one model," Operations Research and Decisions, Wroclaw University of Science Technology, Faculty of Management, vol. 31, pages 77-96.
    9. Sahoo, Biresh K. & Zhu, Joe & Tone, Kaoru & Klemen, Bernhard M., 2014. "Decomposing technical efficiency and scale elasticity in two-stage network DEA," European Journal of Operational Research, Elsevier, vol. 233(3), pages 584-594.
    10. Maryam Shadab & Saber Saati & Reza Farzipoor Saen & Mohammad Khoveyni & Amin Mostafaee, 2021. "Detecting congestion in DEA by solving one model," Operations Research and Decisions, Wroclaw University of Science Technology, Faculty of Management, vol. 31(1), pages 77-96.
    11. Hsiao-Yen Mao & Wen-Min Lu & Hsin-Yen Shieh, 2023. "Exploring the Influence of Environmental Investment on Multinational Enterprises’ Performance from the Sustainability and Marketability Efficiency Perspectives," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    12. Mohsen Khodakarami & Amir Shabani & Reza Farzipoor Saen, 2016. "Concurrent estimation of efficiency, effectiveness and returns to scale," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(5), pages 1202-1220, April.
    13. Zhang, Linyan & Chen, Kun, 2019. "Hierarchical network systems: An application to high-technology industry in China," Omega, Elsevier, vol. 82(C), pages 118-131.
    14. Victor John M. Cantor & Kim Leng Poh, 2020. "Efficiency measurement for general network systems: a slacks-based measure model," Journal of Productivity Analysis, Springer, vol. 54(1), pages 43-57, August.
    15. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    16. Mohammad Amirkhan & Hosein Didehkhani & Kaveh Khalili-Damghani & Ashkan Hafezalkotob, 2018. "Measuring Performance of a Three-Stage Network Structure Using Data Envelopment Analysis and Nash Bargaining Game: A Supply Chain Application," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(05), pages 1429-1467, September.
    17. Yang Huang & Meiqiang Wang, 2024. "Efficiency evaluation of China’s high-tech industry with a dynamic network data envelopment analysis game cross-efficiency model," Operational Research, Springer, vol. 24(1), pages 1-36, March.
    18. Kao, Chiang, 2010. "Congestion measurement and elimination under the framework of data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 123(2), pages 257-265, February.
    19. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2020. "A Nerlovian cost inefficiency two-stage DEA model for modeling banks’ production process: Evidence from the Turkish banking system," Omega, Elsevier, vol. 95(C).
    20. Patrizii, Vincenzo, 2020. "On network two stages variable returns to scale Dea models," Omega, Elsevier, vol. 97(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:23:y:2023:i:4:d:10.1007_s12351-023-00800-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.