IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v150y2021ics1366554521001083.html
   My bibliography  Save this article

Air-HSR cooperation: Impacts on service frequency and environment

Author

Listed:
  • Jiang, Mei
  • Jiang, Changmin
  • Xiao, Yi-bin
  • Wang, Chunan

Abstract

This paper investigates the impacts of air-high-speed rail (HSR) cooperation on service frequencies and the environment under a transportation network. Our model indicates that air-HSR cooperation increases flight frequency, air traffic and the load factor of the airline on the long-haul route. For the short-haul route, the impact of air-HSR cooperation on the airline and the HSR operator critically depends on a number of relevant parameters, for example, the market size and the travel time of HSR. Air-HSR cooperation decreases the emissions per passenger on the long-haul route, however, on the short-haul route where the HSR operator interacts with the airline, the emissions per passenger do not necessarily decrease after the cooperation.

Suggested Citation

  • Jiang, Mei & Jiang, Changmin & Xiao, Yi-bin & Wang, Chunan, 2021. "Air-HSR cooperation: Impacts on service frequency and environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:transe:v:150:y:2021:i:c:s1366554521001083
    DOI: 10.1016/j.tre.2021.102336
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554521001083
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2021.102336?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takebayashi, Mikio, 2015. "Multiple hub network and high-speed railway: Connectivity, gateway, and airport leakage," Transportation Research Part A: Policy and Practice, Elsevier, vol. 79(C), pages 55-64.
    2. Zhi-Chun Li & William Lam & S. Wong, 2009. "The Optimal Transit Fare Structure under Different Market Regimes with Uncertainty in the Network," Networks and Spatial Economics, Springer, vol. 9(2), pages 191-216, June.
    3. Wan, Yulai & Ha, Hun-Koo & Yoshida, Yuichiro & Zhang, Anming, 2016. "Airlines’ reaction to high-speed rail entries: Empirical study of the Northeast Asian market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 532-557.
    4. Wang, Chunan & Wang, Xiaoyu, 2019. "Airport congestion delays and airline networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 328-349.
    5. Ming Hsin Lin, 2015. "Airline Network Competition with New Brand Subsidiaries," Journal of Transport Economics and Policy, University of Bath, vol. 49(1), pages 58-78, January.
    6. Zhang, Anming & Wan, Yulai & Yang, Hangjun, 2019. "Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research," Transport Policy, Elsevier, vol. 81(C), pages 1-19.
    7. Jiang, Changmin & Zhang, Anming, 2014. "Effects of high-speed rail and airline cooperation under hub airport capacity constraint," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 33-49.
    8. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2016. "Air transport and high-speed rail competition: Environmental implications and mitigation strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 261-276.
    9. Yang, Hangjun & Zhang, Anming, 2012. "Effects of high-speed rail and air transport competition on prices, profits and welfare," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1322-1333.
    10. Takebayashi, Mikio, 2016. "How could the collaboration between airport and high speed rail affect the market?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 277-286.
    11. Brueckner, Jan K. & Zhang, Anming, 2010. "Airline emission charges: Effects on airfares, service quality, and aircraft design," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 960-971, September.
    12. Jan K. Brueckner, 2004. "Network Structure and Airline Scheduling," Journal of Industrial Economics, Wiley Blackwell, vol. 52(2), pages 291-312, June.
    13. Takebayashi, Mikio & Onishi, Masamitsu, 2018. "Managing reliever gateway airports with high-speed rail network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 133-146.
    14. Liao, Weijun & Wang, Chunan, 2021. "Airline emissions charges and airline networks," Journal of Air Transport Management, Elsevier, vol. 92(C).
    15. Bilotkach, Volodymyr & Fageda, Xavier & Flores-Fillol, Ricardo, 2010. "Scheduled service versus personal transportation: The role of distance," Regional Science and Urban Economics, Elsevier, vol. 40(1), pages 60-72, January.
    16. Richard, Oliver, 2003. "Flight frequency and mergers in airline markets," International Journal of Industrial Organization, Elsevier, vol. 21(6), pages 907-922, June.
    17. Jan Brueckner & Ricardo Flores-Fillol, 2007. "Airline Schedule Competition," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 30(3), pages 161-177, May.
    18. Fageda, Xavier & Flores-Fillol, Ricardo, 2015. "A note on optimal airline networks under airport congestion," Economics Letters, Elsevier, vol. 128(C), pages 90-94.
    19. Gu, Hongyi & Wan, Yulai, 2020. "Can entry of high-speed rail increase air traffic? Price competition, travel time difference and catchment expansion," Transport Policy, Elsevier, vol. 97(C), pages 55-72.
    20. Høyem, Harald & Odeck, James, 2020. "Optimal public transit frequency under stochastic demand and fixed vehicle size: Application in the Norwegian car ferry sector," Research in Transportation Economics, Elsevier, vol. 82(C).
    21. Xia, Wenyi & Jiang, Changmin & Wang, Kun & Zhang, Anming, 2019. "Air-rail revenue sharing in a multi-airport system: Effects on traffic and social welfare," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 304-319.
    22. Zhang, Fangni & Graham, Daniel J. & Wong, Mark Siu Chun, 2018. "Quantifying the substitutability and complementarity between high-speed rail and air transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 191-215.
    23. Herbon, Avi & Hadas, Yuval, 2015. "Determining optimal frequency and vehicle capacity for public transit routes: A generalized newsvendor model," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 85-99.
    24. Ricardo Flores-Fillol & Rafael Moner-Colonques, 2007. "Strategic Formation of Airline Alliances," Journal of Transport Economics and Policy, University of Bath, vol. 41(3), pages 427-449, September.
    25. Achim I. Czerny, 2015. "The Role of Capital Costs for Airline Responses to Emission Charges," Journal of Transport Economics and Policy, University of Bath, vol. 49(3), pages 475-495, July.
    26. Fageda, Xavier & Flores-Fillol, Ricardo, 2012. "Air services on thin routes: Regional versus low-cost airlines," Regional Science and Urban Economics, Elsevier, vol. 42(4), pages 702-714.
    27. Dobruszkes, Frédéric, 2011. "High-speed rail and air transport competition in Western Europe: A supply-oriented perspective," Transport Policy, Elsevier, vol. 18(6), pages 870-879, November.
    28. Li, Xiaoyu & Jiang, Changmin & Wang, Kun & Ma, Jun, 2018. "Determinants of partnership levels in air-rail cooperation," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 88-96.
    29. Xiaowen Fu & Tae H. Oum & Jia Yan, 2014. "An Analysis of Travel Demand in Japan's Intercity Market Empirical Estimation and Policy Simulation," Journal of Transport Economics and Policy, University of Bath, vol. 48(1), pages 97-113, January.
    30. Xia, Wenyi & Zhang, Anming, 2016. "High-speed rail and air transport competition and cooperation: A vertical differentiation approach," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 456-481.
    31. Zhang, Fangni & Yang, Hai & Liu, Wei, 2014. "The Downs–Thomson Paradox with responsive transit service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 244-263.
    32. Huang, Hai-Jun, 2002. "Pricing and logit-based mode choice models of a transit and highway system with elastic demand," European Journal of Operational Research, Elsevier, vol. 140(3), pages 562-570, August.
    33. Jiang, Changmin & Zhang, Anming, 2016. "Airline network choice and market coverage under high-speed rail competition," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 248-260.
    34. Álvarez-SanJaime, Óscar & Cantos-Sanchez, Pedro & Moner-Colonques, Rafael & Sempere-Monerris, Jose J., 2020. "Pricing and infrastructure fees in shaping cooperation in a model of high-speed rail and airline competition," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 22-41.
    35. Flores-Fillol, Ricardo, 2009. "Airline competition and network structure," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 966-983, December.
    36. Lin, Ming Hsin, 2012. "Airlines-within-airlines strategies and existence of low-cost carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 637-651.
    37. Kawasaki, Akio, 2008. "Network effects, heterogeneous time value and network formation in the airline market," Regional Science and Urban Economics, Elsevier, vol. 38(4), pages 388-403, July.
    38. Oum, Tae Hoon & Fu, Xiaowen, 2007. "Air transport security user charge pricing: An investigation of flat per-passenger charge vs. Ad Valorem user charge schemes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(3), pages 283-293, May.
    39. Jan K. Brueckner, 2010. "Schedule Competition Revisited," Journal of Transport Economics and Policy, University of Bath, vol. 44(3), pages 261-285, September.
    40. Nirvikar Singh & Xavier Vives, 1984. "Price and Quantity Competition in a Differentiated Duopoly," RAND Journal of Economics, The RAND Corporation, vol. 15(4), pages 546-554, Winter.
    41. Fu, Xiaowen & Zhang, Anming & Lei, Zheng, 2012. "Will China’s airline industry survive the entry of high-speed rail?," Research in Transportation Economics, Elsevier, vol. 35(1), pages 13-25.
    42. Socorro, M. Pilar & Viecens, M. Fernanda, 2013. "The effects of airline and high speed train integration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 160-177.
    43. Frédéric Dobruszkes, 2011. "High-speed rail and air transport competition in Western Europe: A supply-oriented perspective," ULB Institutional Repository 2013/96164, ULB -- Universite Libre de Bruxelles.
    44. Liu, Shuli & Wan, Yulai & Ha, Hun-Koo & Yoshida, Yuichiro & Zhang, Anming, 2019. "Impact of high-speed rail network development on airport traffic and traffic distribution: Evidence from China and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 115-135.
    45. Jiang, Changmin & D'Alfonso, Tiziana & Wan, Yulai, 2017. "Air-rail cooperation: Partnership level, market structure and welfare implications," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 461-482.
    46. Orit Hassin & Oz Shy, 2004. "Code‐sharing Agreements and Interconnections in Markets for International Flights," Review of International Economics, Wiley Blackwell, vol. 12(3), pages 337-352, August.
    47. Wang, Chunan & Wang, Xiaoyu, 2019. "Why do airlines prefer multi-hub networks?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 56-74.
    48. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2015. "Would competition between air transport and high-speed rail benefit environment and social welfare?," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 118-137.
    49. Park, Yonghwa & Ha, Hun-Koo, 2006. "Analysis of the impact of high-speed railroad service on air transport demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(2), pages 95-104, March.
    50. Sun, S. & Szeto, W.Y., 2019. "Optimal sectional fare and frequency settings for transit networks with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 147-177.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Xingchen & Jiang, Changmin & Jiang, Siming & Guo, Huanxiu, 2023. "Making airline coalition frequent-flyer programs profitable: An analytical investigation," Transport Policy, Elsevier, vol. 141(C), pages 245-262.
    2. Tang, Zhaopei & Wang, Liehui & Wu, Wei, 2023. "The impact of high-speed rail on urban carbon emissions: Evidence from the Yangtze River Delta," Journal of Transport Geography, Elsevier, vol. 110(C).
    3. Asep Yayat Nurhidayat & Hera Widyastuti & Sutikno & Dwi Phalita Upahita, 2023. "Research on Passengers’ Preferences and Impact of High-Speed Rail on Air Transport Demand," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    4. Wen, Xin & Chung, Sai-Ho & Ji, Ping & Sheu, Jiuh-Biing, 2022. "Individual scheduling approach for multi-class airline cabin crew with manpower requirement heterogeneity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    5. Wang, Chunan & Jiang, Changmin & Zhang, Anming, 2021. "Effects of Airline Entry on High-Speed Rail," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 242-265.
    6. Jiang, Changmin & Wang, Chunan, 2021. "High-speed rail pricing: Implications for social welfare," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    7. Wang, Chunan & Jiang, Changmin, 2022. "How do pandemics affect intercity air travel? Implications for traffic and environment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 330-353.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Changmin & Wang, Chunan, 2021. "High-speed rail pricing: Implications for social welfare," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    2. Wang, Wei & Sun, Huijun & Wu, Jianjun, 2020. "How does the decision of high-speed rail operator affect social welfare? Considering competition between high-speed rail and air transport," Transport Policy, Elsevier, vol. 88(C), pages 1-15.
    3. Zhang, Anming & Wan, Yulai & Yang, Hangjun, 2019. "Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research," Transport Policy, Elsevier, vol. 81(C), pages 1-19.
    4. Wang, Chunan & Jiang, Changmin, 2022. "How do pandemics affect intercity air travel? Implications for traffic and environment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 330-353.
    5. Xia, Wenyi & Jiang, Changmin & Wang, Kun & Zhang, Anming, 2019. "Air-rail revenue sharing in a multi-airport system: Effects on traffic and social welfare," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 304-319.
    6. Jiang, Changmin & D'Alfonso, Tiziana & Wan, Yulai, 2017. "Air-rail cooperation: Partnership level, market structure and welfare implications," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 461-482.
    7. Wang, Chunan & Jiang, Changmin & Zhang, Anming, 2021. "Effects of Airline Entry on High-Speed Rail," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 242-265.
    8. Jiang, Changmin, 2021. "Aviation tax and railway subsidy: An integrated policy," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 1-13.
    9. Li, Zhi-Chun & Tu, Ningwen & Fu, Xiaowen & Sheng, Dian, 2022. "Modeling the effects of airline and high-speed rail cooperation on multi-airport systems: The implications on congestion, competition and social welfare," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 448-478.
    10. Wang, Chunan & Wang, Xiaoyu, 2019. "Airport congestion delays and airline networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 328-349.
    11. Zhu, Feng & Wu, Xu & Cao, Chengxuan, 2021. "High-speed rail and air transport competition under high flight delay conditions in China: A case study of the Beijing-Shanghai corridor," Utilities Policy, Elsevier, vol. 71(C).
    12. Wang, Chunan & Wang, Xiaoyu, 2019. "Why do airlines prefer multi-hub networks?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 56-74.
    13. Takebayashi, Mikio & Yamaguchi, Hiromichi, 2022. "Managing a multiple-gateway airport system with super high-speed rail," Journal of Air Transport Management, Elsevier, vol. 99(C).
    14. Chen, Yilin & Yang, Hangjun & Wang, Kun & Guo, Lin, 2022. "Intercity network expansion by low-cost carrier or high-speed rail, from the environmental perspective," Journal of Air Transport Management, Elsevier, vol. 104(C).
    15. Hou, Meng & Wang, Kun & Yang, Hangjun, 2021. "Hub airport slot Re-allocation and subsidy policy to speed up air traffic recovery amid COVID-19 pandemic --- case on the Chinese airline market," Journal of Air Transport Management, Elsevier, vol. 93(C).
    16. Su, Min & Luan, Weixin & Fu, Xiaowen & Yang, Zaili & Zhang, Rui, 2020. "The competition effects of low-cost carriers and high-speed rail on the Chinese aviation market," Transport Policy, Elsevier, vol. 95(C), pages 37-46.
    17. Wang, Kun & Xia, Wenyi & Zhang, Anming & Zhang, Qiong, 2018. "Effects of train speed on airline demand and price: Theory and empirical evidence from a natural experiment," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 99-130.
    18. Jiang, Changmin & Wang, Kun & Wang, Qiang & Yang, Hangjun, 2022. "The Impact of High-Speed Rail Competition on Airline On-Time Performance," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 109-127.
    19. Asep Yayat Nurhidayat & Hera Widyastuti & Sutikno & Dwi Phalita Upahita, 2023. "Research on Passengers’ Preferences and Impact of High-Speed Rail on Air Transport Demand," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    20. Liao, Weijun & Wang, Chunan, 2021. "Airline emissions charges and airline networks," Journal of Air Transport Management, Elsevier, vol. 92(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:150:y:2021:i:c:s1366554521001083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.