IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v118y2018icp133-146.html
   My bibliography  Save this article

Managing reliever gateway airports with high-speed rail network

Author

Listed:
  • Takebayashi, Mikio
  • Onishi, Masamitsu

Abstract

On the basis of model analysis, this study proposes an effective method for managing reliever gateway airports when the main gateway airport is completely dysfunctional owing to a catastrophe. In particular, we deal with the case where the main and reliever airports are connected by high-speed rail (HSR), and we discuss a desirable and effective support policy for regaining passenger flow from/to the affected area. First, we analyze the market behavior under the usual condition as the base case by adopting the bi-level model, which is a supply-demand interaction model. Second, under the supposition of a catastrophe, we set up some scenarios of management policies, i.e. (i) no special policy and (ii) providing support to HSR passengers to induce them to the reliever gateways. Through such scenario analyses, we show that (i) HSR fare restriction is required to regain sufficient passenger flow and (ii) providing fare support to HSR passengers is an effective way to regain passenger flow using reliever gateways, which can contribute toward building a robust air transport network.

Suggested Citation

  • Takebayashi, Mikio & Onishi, Masamitsu, 2018. "Managing reliever gateway airports with high-speed rail network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 133-146.
  • Handle: RePEc:eee:transa:v:118:y:2018:i:c:p:133-146
    DOI: 10.1016/j.tra.2018.08.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856418301320
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2018.08.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takebayashi, Mikio, 2015. "Multiple hub network and high-speed railway: Connectivity, gateway, and airport leakage," Transportation Research Part A: Policy and Practice, Elsevier, vol. 79(C), pages 55-64.
    2. Zhang, Anming & Czerny, Achim I., 2012. "Airports and airlines economics and policy: An interpretive review of recent research," Economics of Transportation, Elsevier, vol. 1(1), pages 15-34.
    3. David Gillen & Benny Mantin, 2013. "Transportation Infrastructure Management One- and Two-sided Market Approaches," Journal of Transport Economics and Policy, University of Bath, vol. 47(2), pages 207-227, May.
    4. Janić, Milan, 2015. "Reprint of “Modelling the resilience, friability and costs of an air transport network affected by a large-scale disruptive event”," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 77-92.
    5. Jiang, Changmin & Zhang, Anming, 2014. "Effects of high-speed rail and airline cooperation under hub airport capacity constraint," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 33-49.
    6. Cheng, Yung-Hsiang, 2010. "High-speed rail in Taiwan: New experience and issues for future development," Transport Policy, Elsevier, vol. 17(2), pages 51-63, March.
    7. Hofer, Christian & Windle, Robert J. & Dresner, Martin E., 2008. "Price premiums and low cost carrier competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(5), pages 864-882, September.
    8. Bell, Michael G. H., 1995. "Stochastic user equilibrium assignment in networks with queues," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 125-137, April.
    9. Takebayashi, Mikio, 2016. "How could the collaboration between airport and high speed rail affect the market?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 277-286.
    10. Zhou, Jing & Lam, William H.K. & Heydecker, Benjamin G., 2005. "The generalized Nash equilibrium model for oligopolistic transit market with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 39(6), pages 519-544, July.
    11. Zhang, Dong & Yu, Chuhang & Desai, Jitamitra & Lau, H.Y.K. Henry, 2016. "A math-heuristic algorithm for the integrated air service recovery," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 211-236.
    12. Windle, Robert & Dresner, Martin, 1999. "Competitive responses to low cost carrier entry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 35(1), pages 59-75, March.
    13. Givoni, Moshe & Banister, David, 2006. "Airline and railway integration," Transport Policy, Elsevier, vol. 13(5), pages 386-397, September.
    14. Bard, Jonathan F. & Mohan, Dinesh Natarajan, 2008. "Reallocating arrival slots during a ground delay program," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 113-134, February.
    15. Voltes-Dorta, Augusto & Rodríguez-Déniz, Héctor & Suau-Sanchez, Pere, 2017. "Vulnerability of the European air transport network to major airport closures from the perspective of passenger delays: Ranking the most critical airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 119-145.
    16. Takebayashi, Mikio, 2018. "Managing airport charges under the multiple hub network with high speed rail: Considering capacity and gateway function," Transportation Research Part A: Policy and Practice, Elsevier, vol. 112(C), pages 108-123.
    17. Dobruszkes, Frédéric, 2011. "High-speed rail and air transport competition in Western Europe: A supply-oriented perspective," Transport Policy, Elsevier, vol. 18(6), pages 870-879, November.
    18. Zhang, X. & Miller-Hooks, E. & Denny, K., 2015. "Assessing the role of network topology in transportation network resilience," Journal of Transport Geography, Elsevier, vol. 46(C), pages 35-45.
    19. Xiaowen Fu & Tae H. Oum & Jia Yan, 2014. "An Analysis of Travel Demand in Japan's Intercity Market Empirical Estimation and Policy Simulation," Journal of Transport Economics and Policy, University of Bath, vol. 48(1), pages 97-113, January.
    20. Xia, Wenyi & Zhang, Anming, 2016. "High-speed rail and air transport competition and cooperation: A vertical differentiation approach," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 456-481.
    21. Mikio Takebayashi, 2016. "Air Transport and High Speed Railway: How Would Collaboration Affect Service Performance?," Advances in Airline Economics, in: Airline Efficiency, volume 5, pages 197-220, Emerald Group Publishing Limited.
    22. Xia, Wenyi & Zhang, Anming, 2017. "Air and high-speed rail transport integration on profits and welfare: Effects of air-rail connecting time," Journal of Air Transport Management, Elsevier, vol. 65(C), pages 181-190.
    23. Hanaoka, Shinya & Takebayashi, Mikio & Ishikura, Tomoki & Saraswati, Batari, 2014. "Low-cost carriers versus full service carriers in ASEAN: The impact of liberalization policy on competition," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 96-105.
    24. Harker, Patrick T., 1991. "Generalized Nash games and quasi-variational inequalities," European Journal of Operational Research, Elsevier, vol. 54(1), pages 81-94, September.
    25. Fu, Xiaowen & Zhang, Anming & Lei, Zheng, 2012. "Will China’s airline industry survive the entry of high-speed rail?," Research in Transportation Economics, Elsevier, vol. 35(1), pages 13-25.
    26. Murakami, Hideki & Amano, Yoshihisa & Asahi, Ryota, 2015. "Dynamic effect of inter-firm rivalry on airfares: Case of Japan's full-service and new air carriers," Journal of Air Transport Management, Elsevier, vol. 44, pages 25-33.
    27. Socorro, M. Pilar & Viecens, M. Fernanda, 2013. "The effects of airline and high speed train integration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 160-177.
    28. Frédéric Dobruszkes, 2011. "High-speed rail and air transport competition in Western Europe: A supply-oriented perspective," ULB Institutional Repository 2013/96164, ULB -- Universite Libre de Bruxelles.
    29. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.
    30. Takebayashi, Mikio, 2013. "Network competition and the difference in operating cost: Model analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 57(C), pages 85-94.
    31. Janić, Milan, 2015. "Modelling the resilience, friability and costs of an air transport network affected by a large-scale disruptive event," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 1-16.
    32. Pels, Eric & Nijkamp, Peter & Rietveld, Piet, 2000. "Airport and Airline Competition for Passengers Departing from a Large Metropolitan Area," Journal of Urban Economics, Elsevier, vol. 48(1), pages 29-45, July.
    33. Douglas W. Caves & Laurits R. Christensen & Michael W. Tretheway, 1984. "Economies of Density versus Economies of Scale: Why Trunk and Local Service Airline Costs Differ," RAND Journal of Economics, The RAND Corporation, vol. 15(4), pages 471-489, Winter.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Zhi-Chun & Tu, Ningwen & Fu, Xiaowen & Sheng, Dian, 2022. "Modeling the effects of airline and high-speed rail cooperation on multi-airport systems: The implications on congestion, competition and social welfare," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 448-478.
    2. Dobruszkes, Frédéric & Moyano, Amparo, 2019. "From transportation robustness to the robustness of modelling-based political decision making: A comment on ‘Managing reliever gateway airports with high-speed rail network’," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 165-166.
    3. Xia, Wenyi & Jiang, Changmin & Wang, Kun & Zhang, Anming, 2019. "Air-rail revenue sharing in a multi-airport system: Effects on traffic and social welfare," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 304-319.
    4. Takebayashi, Mikio, 2021. "Workability of a multiple-gateway airport system with a high-speed rail network," Transport Policy, Elsevier, vol. 107(C), pages 61-71.
    5. Jiang, Mei & Jiang, Changmin & Xiao, Yi-bin & Wang, Chunan, 2021. "Air-HSR cooperation: Impacts on service frequency and environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    6. Takebayashi, Mikio & Yamaguchi, Hiromichi, 2022. "Managing a multiple-gateway airport system with super high-speed rail," Journal of Air Transport Management, Elsevier, vol. 99(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takebayashi, Mikio & Yamaguchi, Hiromichi, 2022. "Managing a multiple-gateway airport system with super high-speed rail," Journal of Air Transport Management, Elsevier, vol. 99(C).
    2. Takebayashi, Mikio, 2021. "Workability of a multiple-gateway airport system with a high-speed rail network," Transport Policy, Elsevier, vol. 107(C), pages 61-71.
    3. Takebayashi, Mikio, 2018. "Managing airport charges under the multiple hub network with high speed rail: Considering capacity and gateway function," Transportation Research Part A: Policy and Practice, Elsevier, vol. 112(C), pages 108-123.
    4. Zhang, Anming & Wan, Yulai & Yang, Hangjun, 2019. "Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research," Transport Policy, Elsevier, vol. 81(C), pages 1-19.
    5. Xia, Wenyi & Zhang, Anming, 2016. "High-speed rail and air transport competition and cooperation: A vertical differentiation approach," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 456-481.
    6. Li, Zhi-Chun & Tu, Ningwen & Fu, Xiaowen & Sheng, Dian, 2022. "Modeling the effects of airline and high-speed rail cooperation on multi-airport systems: The implications on congestion, competition and social welfare," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 448-478.
    7. Jiang, Changmin & D'Alfonso, Tiziana & Wan, Yulai, 2017. "Air-rail cooperation: Partnership level, market structure and welfare implications," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 461-482.
    8. Jiang, Mei & Jiang, Changmin & Xiao, Yi-bin & Wang, Chunan, 2021. "Air-HSR cooperation: Impacts on service frequency and environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    9. Liu, Shuli & Wan, Yulai & Ha, Hun-Koo & Yoshida, Yuichiro & Zhang, Anming, 2019. "Impact of high-speed rail network development on airport traffic and traffic distribution: Evidence from China and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 115-135.
    10. Xia, Wenyi & Jiang, Changmin & Wang, Kun & Zhang, Anming, 2019. "Air-rail revenue sharing in a multi-airport system: Effects on traffic and social welfare," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 304-319.
    11. Zhu, Feng & Wu, Xu & Cao, Chengxuan, 2021. "High-speed rail and air transport competition under high flight delay conditions in China: A case study of the Beijing-Shanghai corridor," Utilities Policy, Elsevier, vol. 71(C).
    12. Asep Yayat Nurhidayat & Hera Widyastuti & Sutikno & Dwi Phalita Upahita, 2023. "Research on Passengers’ Preferences and Impact of High-Speed Rail on Air Transport Demand," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    13. Wang, Kun & Xia, Wenyi & Zhang, Anming, 2017. "Should China further expand its high-speed rail network? Consider the low-cost carrier factor," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 105-120.
    14. Su, Min & Luan, Weixin & Fu, Xiaowen & Yang, Zaili & Zhang, Rui, 2020. "The competition effects of low-cost carriers and high-speed rail on the Chinese aviation market," Transport Policy, Elsevier, vol. 95(C), pages 37-46.
    15. Takebayashi, Mikio, 2016. "How could the collaboration between airport and high speed rail affect the market?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 277-286.
    16. Tsunoda, Yushi, 2018. "Transportation policy for high-speed rail competing with airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 350-360.
    17. Takebayashi, Mikio, 2015. "Multiple hub network and high-speed railway: Connectivity, gateway, and airport leakage," Transportation Research Part A: Policy and Practice, Elsevier, vol. 79(C), pages 55-64.
    18. Wang, Wei & Sun, Huijun & Wu, Jianjun, 2020. "How does the decision of high-speed rail operator affect social welfare? Considering competition between high-speed rail and air transport," Transport Policy, Elsevier, vol. 88(C), pages 1-15.
    19. Tiziana D'Alfonso & Changmin Jiang & Valentina Bracaglia, 2015. "Air transport and high-speed rail competition: environmental implications and mitigation strategies," DIAG Technical Reports 2015-15, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    20. Zhu, Zhenran & Zhang, Anming & Zhang, Yahua, 2018. "Connectivity of intercity passenger transportation in China: A multi-modal and network approach," Journal of Transport Geography, Elsevier, vol. 71(C), pages 263-276.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:118:y:2018:i:c:p:133-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.