IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v71y2015icp1-18.html
   My bibliography  Save this article

Discomfort in mass transit and its implication for scheduling and pricing

Author

Listed:
  • de Palma, André
  • Kilani, Moez
  • Proost, Stef

Abstract

This paper discusses the formulation of crowding in public transport and its implications for pricing, seating capacity and optimal scheduling. An analytical model is used to describe the user equilibrium and the optimal equilibrium for different stylized conditions. For the one OD pair case with identical desired arrival time, we derive the optimal dynamic pricing and optimal share of seats. For the uniformly distributed desired arrival times case, we derive the optimal time table and the optimal pricing. Next we generalize the results to the case of a small network with several stations, stochastic choice and allocation of seats.

Suggested Citation

  • de Palma, André & Kilani, Moez & Proost, Stef, 2015. "Discomfort in mass transit and its implication for scheduling and pricing," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 1-18.
  • Handle: RePEc:eee:transb:v:71:y:2015:i:c:p:1-18
    DOI: 10.1016/j.trb.2014.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261514001702
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lam, William H. K. & Cheung, Chung-Yu & Lam, C. F., 1999. "A study of crowding effects at the Hong Kong light rail transit stations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(5), pages 401-415, June.
    2. de Palma, André & Lindsey, Robin, 2001. "Optimal timetables for public transportation," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 789-813, September.
    3. Mohring, Herbert, 1972. "Optimization and Scale Economies in Urban Bus Transportation," American Economic Review, American Economic Association, vol. 62(4), pages 591-604, September.
    4. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, January.
    5. Ian W. H. Parry & Kenneth A. Small, 2009. "Should Urban Transit Subsidies Be Reduced?," American Economic Review, American Economic Association, vol. 99(3), pages 700-724, June.
    6. Hamdouch, Younes & Lawphongpanich, Siriphong, 2008. "Schedule-based transit assignment model with travel strategies and capacity constraints," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 663-684, August.
    7. Luke Haywood & Martin Koning, 2012. "Avoir les coudes serrés dans le métro parisien : évaluation contingente du confort des déplacements," Revue d'économie industrielle, De Boeck Université, vol. 0(4), pages 111-144.
    8. Kraus, Marvin, 1991. "Discomfort externalities and marginal cost transit fares," Journal of Urban Economics, Elsevier, vol. 29(2), pages 249-259, March.
    9. Sumalee, Agachai & Tan, Zhijia & Lam, William H.K., 2009. "Dynamic stochastic transit assignment with explicit seat allocation model," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 895-912, September.
    10. Huang, Hai-Jun, 2000. "Fares and tolls in a competitive system with transit and highway: the case with two groups of commuters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 36(4), pages 267-284, December.
    11. Prud'homme, Rémy & Koning, Martin & Lenormand, Luc & Fehr, Anne, 2012. "Public transport congestion costs: The case of the Paris subway," Transport Policy, Elsevier, vol. 21(C), pages 101-109.
    12. Hamdouch, Younes & Ho, H.W. & Sumalee, Agachai & Wang, Guodong, 2011. "Schedule-based transit assignment model with vehicle capacity and seat availability," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1805-1830.
    13. Rouwendal, Jan & Verhoef, Erik T., 2004. "2. Second-Best Pricing For Imperfect Substitutes In Urban Networks," Research in Transportation Economics, Elsevier, vol. 9(1), pages 27-60, January.
    14. Kraus, Marvin, 2012. "Road pricing with optimal mass transit," Journal of Urban Economics, Elsevier, vol. 72(2), pages 81-86.
    15. Cortés, Cristián E. & Jara-Moroni, Pedro & Moreno, Eduardo & Pineda, Cristobal, 2013. "Stochastic transit equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 29-44.
    16. Piet Rietveld & Jasper Dekkers & Stefan van Woudenberg, 2001. "Choice of Frequency and Vehicle Size in Rail Transport: Implications for Marginal External Costs," Tinbergen Institute Discussion Papers 01-109/3, Tinbergen Institute.
    17. Li, Zheng & Hensher, David A., 2011. "Crowding and public transport: A review of willingness to pay evidence and its relevance in project appraisal," Transport Policy, Elsevier, vol. 18(6), pages 880-887, November.
    18. Proost, Stef & Dender, Kurt Van, 2008. "Optimal urban transport pricing in the presence of congestion, economies of density and costly public funds," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(9), pages 1220-1230, November.
    19. Tian, Qiong & Huang, Hai-Jun & Yang, Hai, 2007. "Equilibrium properties of the morning peak-period commuting in a many-to-one mass transit system," Transportation Research Part B: Methodological, Elsevier, vol. 41(6), pages 616-631, July.
    20. Kraus, Marvin & Yoshida, Yuichiro, 2002. "The Commuter's Time-of-Use Decision and Optimal Pricing and Service in Urban Mass Transit," Journal of Urban Economics, Elsevier, vol. 51(1), pages 170-195, January.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:71:y:2015:i:c:p:1-18. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.