IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00784303.html
   My bibliography  Save this paper

Discomfort in mass transit and its implication for scheduling and pricing

Author

Listed:
  • André de Palma

    (ENS Cachan - École normale supérieure - Cachan)

  • Moez Kilani

    (EQUIPPE - Economie Quantitative, Intégration, Politiques Publiques et Econométrie - Université de Lille, Sciences et Technologies - Université de Lille, Sciences Humaines et Sociales - PRES Université Lille Nord de France - Université de Lille, Droit et Santé)

  • Stef Proost

    (KU Leuven - Catholic University of Leuven = Katholieke Universiteit Leuven)

Abstract

This paper proposes an analytical formulation of discomfort in mass transit and discusses its micro-economic properties. The formula we introduce reflects real situations faced by the passengers, it has nice mathematical properties and it is easy to compute. The discomfort formulation is used to analyze optimal scheduling and pricing of transit in a dynamic model.

Suggested Citation

  • André de Palma & Moez Kilani & Stef Proost, 2013. "Discomfort in mass transit and its implication for scheduling and pricing," Working Papers hal-00784303, HAL.
  • Handle: RePEc:hal:wpaper:hal-00784303
    Note: View the original document on HAL open archive server: https://hal.science/hal-00784303
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00784303/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. de Palma, André & Lindsey, Robin, 2001. "Optimal timetables for public transportation," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 789-813, September.
    2. Mohring, Herbert, 1972. "Optimization and Scale Economies in Urban Bus Transportation," American Economic Review, American Economic Association, vol. 62(4), pages 591-604, September.
    3. Ian W. H. Parry & Kenneth A. Small, 2009. "Should Urban Transit Subsidies Be Reduced?," American Economic Review, American Economic Association, vol. 99(3), pages 700-724, June.
    4. Hamdouch, Younes & Lawphongpanich, Siriphong, 2008. "Schedule-based transit assignment model with travel strategies and capacity constraints," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 663-684, August.
    5. Kraus, Marvin, 1991. "Discomfort externalities and marginal cost transit fares," Journal of Urban Economics, Elsevier, vol. 29(2), pages 249-259, March.
    6. Sumalee, Agachai & Tan, Zhijia & Lam, William H.K., 2009. "Dynamic stochastic transit assignment with explicit seat allocation model," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 895-912, September.
    7. Huang, Hai-Jun, 2000. "Fares and tolls in a competitive system with transit and highway: the case with two groups of commuters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 36(4), pages 267-284, December.
    8. Cortés, Cristián E. & Jara-Moroni, Pedro & Moreno, Eduardo & Pineda, Cristobal, 2013. "Stochastic transit equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 29-44.
    9. Kilani, Moez & Proost, Stef & van der Loo, Saskia, 2014. "Road pricing and public transport pricing reform in Paris: Complements or substitutes?," Economics of Transportation, Elsevier, vol. 3(2), pages 175-187.
    10. Rouwendal, Jan & Verhoef, Erik T., 2004. "2. Second-Best Pricing For Imperfect Substitutes In Urban Networks," Research in Transportation Economics, Elsevier, vol. 9(1), pages 27-60, January.
    11. Proost, Stef & Dender, Kurt Van, 2008. "Optimal urban transport pricing in the presence of congestion, economies of density and costly public funds," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(9), pages 1220-1230, November.
    12. Tian, Qiong & Huang, Hai-Jun & Yang, Hai, 2007. "Equilibrium properties of the morning peak-period commuting in a many-to-one mass transit system," Transportation Research Part B: Methodological, Elsevier, vol. 41(6), pages 616-631, July.
    13. Lam, William H. K. & Cheung, Chung-Yu & Lam, C. F., 1999. "A study of crowding effects at the Hong Kong light rail transit stations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(5), pages 401-415, June.
    14. Luke Haywood & Martin Koning, 2012. "Avoir les coudes serrés dans le métro parisien : évaluation contingente du confort des déplacements," Revue d'économie industrielle, De Boeck Université, vol. 0(4), pages 111-144.
    15. Li, Zheng & Hensher, David A., 2011. "Crowding and public transport: A review of willingness to pay evidence and its relevance in project appraisal," Transport Policy, Elsevier, vol. 18(6), pages 880-887, November.
    16. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, December.
    17. Kraus, Marvin, 2012. "Road pricing with optimal mass transit," Journal of Urban Economics, Elsevier, vol. 72(2), pages 81-86.
    18. Piet Rietveld & Jasper Dekkers & Stefan van Woudenberg, 2001. "Choice of Frequency and Vehicle Size in Rail Transport: Implications for Marginal External Costs," Tinbergen Institute Discussion Papers 01-109/3, Tinbergen Institute.
    19. Prud'homme, Rémy & Koning, Martin & Lenormand, Luc & Fehr, Anne, 2012. "Public transport congestion costs: The case of the Paris subway," Transport Policy, Elsevier, vol. 21(C), pages 101-109.
    20. Mark Wardman & Gerard Whelan, 2011. "Twenty Years of Rail Crowding Valuation Studies: Evidence and Lessons from British Experience," Transport Reviews, Taylor & Francis Journals, vol. 31(3), pages 379-398.
    21. Hamdouch, Younes & Ho, H.W. & Sumalee, Agachai & Wang, Guodong, 2011. "Schedule-based transit assignment model with vehicle capacity and seat availability," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1805-1830.
    22. Kraus, Marvin & Yoshida, Yuichiro, 2002. "The Commuter's Time-of-Use Decision and Optimal Pricing and Service in Urban Mass Transit," Journal of Urban Economics, Elsevier, vol. 51(1), pages 170-195, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haywood, Luke & Koning, Martin, 2015. "The distribution of crowding costs in public transport: New evidence from Paris," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 182-201.
    2. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    3. Zhang, Junlin & Yang, Hai & Lindsey, Robin & Li, Xinwei, 2020. "Modeling and managing congested transit service with heterogeneous users under monopoly," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 249-266.
    4. Kilani, Moez & Proost, Stef & van der Loo, Saskia, 2014. "Road pricing and public transport pricing reform in Paris: Complements or substitutes?," Economics of Transportation, Elsevier, vol. 3(2), pages 175-187.
    5. Tian, Qiong & Liu, Peng & Ong, Ghim Ping & Huang, Hai-Jun, 2021. "Morning commuting pattern and crowding pricing in a many-to-one public transit system with heterogeneous users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    6. Cats, Oded & West, Jens & Eliasson, Jonas, 2016. "A dynamic stochastic model for evaluating congestion and crowding effects in transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 43-57.
    7. Liu, Peng & Liu, Jielun & Ong, Ghim Ping & Tian, Qiong, 2020. "Flow pattern and optimal capacity in a bi-modal traffic corridor with heterogeneous users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    8. André de Palma & Robin Lindsey & Guillaume Monchambert, 2017. "The Economics of Crowding in Public Transport," Post-Print hal-01203310, HAL.
    9. Hörcher, Daniel & De Borger, Bruno & Seifu, Woubit & Graham, Daniel J., 2020. "Public transport provision under agglomeration economies," Regional Science and Urban Economics, Elsevier, vol. 81(C).
    10. Hörcher, Daniel & De Borger, Bruno & Graham, Daniel J., 2023. "Subsidised transport services in a fiscal federation: Why local governments may be against decentralised service provision," Economics of Transportation, Elsevier, vol. 34(C).
    11. de Palma, André & Lindsey, Robin & Monchambert, Guillaume, 2017. "The economics of crowding in rail transit," Journal of Urban Economics, Elsevier, vol. 101(C), pages 106-122.
    12. Vincent van den Berg & Erik T. Verhoef, 2011. "Congesting Pricing in a Road and Rail Network with Heterogeneous Values of Time and Schedule Delay," Tinbergen Institute Discussion Papers 11-059/3, Tinbergen Institute, revised 24 May 2012.
    13. Palma, Andre de & Lindsey, Robin & Monchambert, Guillaume, 2016. "Optimal Transit Pricing with Crowding and Traffic Congestion: A Dynamic Equilibrium Analysis," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319276, Transportation Research Forum.
    14. De Borger, Bruno & Proost, Stef, 2015. "The political economy of public transport pricing and supply decisions," Economics of Transportation, Elsevier, vol. 4(1), pages 95-109.
    15. Hörcher, Daniel & Graham, Daniel J. & Anderson, Richard J., 2017. "Crowding cost estimation with large scale smart card and vehicle location data," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 105-125.
    16. Tirachini, Alejandro & Hensher, David A. & Rose, John M., 2014. "Multimodal pricing and optimal design of urban public transport: The interplay between traffic congestion and bus crowding," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 33-54.
    17. Haywood, Luke & Koning, Martin & Prud'homme, Remy, 2018. "The economic cost of subway congestion: Estimates from Paris," Economics of Transportation, Elsevier, vol. 14(C), pages 1-8.
    18. Börjesson, Maria & Fung, Chau Man & Proost, Stef, 2017. "Optimal prices and frequencies for buses in Stockholm," Economics of Transportation, Elsevier, vol. 9(C), pages 20-36.
    19. Wang, Wei (Walker) & Wang, David Z.W. & Zhang, Fangni & Sun, Huijun & Zhang, Wenyi & Wu, Jianjun, 2017. "Overcoming the Downs-Thomson Paradox by transit subsidy policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 126-147.
    20. Börjesson, Maria & Fung, Chau Man & Proost, Stef & Yan, Zifei, 2018. "Do buses hinder cyclists or is it the other way around? Optimal bus fares, bus stops and cycling tolls," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 326-346.

    More about this item

    Keywords

    Public transport; congestion discomfort; timetable schedul delay cost;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00784303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.