IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v173y2023icp90-118.html
   My bibliography  Save this article

Column-and-constraint-generation-based approach to a robust reverse logistic network design for bike sharing

Author

Listed:
  • Huang, Sen
  • Liu, Kanglin
  • Zhang, Zhi-Hai

Abstract

Dockless bike-sharing systems have grown rapidly in China in recent years. A large number of shared bikes have been put into use, which results in a serious problem of uncollected faulty bikes. However, since the exact number of faulty shared bikes cannot be known a priori, a reverse logistic network must be designed strategically to reduce the total costs of the collection process. This paper studies a robust reverse logistic network design problem of shared bikes that integrates the locations of recycling centres and the planning of collection routes in uncertain collection demand situations. A two-stage robust location routing model is presented to capture the uncertainty of collection demands, and then a set-partition reformulation is presented to address the computationally intractable model. We develop a column-and-constraint-generation-based algorithm combining a tailored column generation algorithm to efficiently solve the proposed model. Numerical experiments and parameter analyses, which are based on real data from bike-sharing companies, are conducted to evaluate the performance of the proposed algorithm. A case study is presented to further analyse the spatial features of the reverse logistic network of shared bikes. Benefits of applying robust optimization are demonstrated experimentally in terms of total cost under uncertain collection demand.

Suggested Citation

  • Huang, Sen & Liu, Kanglin & Zhang, Zhi-Hai, 2023. "Column-and-constraint-generation-based approach to a robust reverse logistic network design for bike sharing," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 90-118.
  • Handle: RePEc:eee:transb:v:173:y:2023:i:c:p:90-118
    DOI: 10.1016/j.trb.2023.04.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261523000735
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2023.04.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zetina, Carlos Armando & Contreras, Ivan & Cordeau, Jean-François & Nikbakhsh, Ehsan, 2017. "Robust uncapacitated hub location," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 393-410.
    2. Weibo Li & Maria Kamargianni, 2020. "An Integrated Choice and Latent Variable Model to Explore the Influence of Attitudinal and Perceptual Factors on Shared Mobility Choices and Their Value of Time Estimation," Transportation Science, INFORMS, vol. 54(1), pages 62-83, January.
    3. Arslan, Okan & Kumcu, Gül Çulhan & Kara, Bahar Yetiş & Laporte, Gilbert, 2021. "The location and location-routing problem for the refugee camp network design," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 201-220.
    4. Esposito Amideo, A. & Scaparra, M.P. & Kotiadis, K., 2019. "Optimising shelter location and evacuation routing operations: The critical issues," European Journal of Operational Research, Elsevier, vol. 279(2), pages 279-295.
    5. Shubhechyya Ghosal & Wolfram Wiesemann, 2020. "The Distributionally Robust Chance-Constrained Vehicle Routing Problem," Operations Research, INFORMS, vol. 68(3), pages 716-732, May.
    6. Shaheen, Susan & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present, and Future," Institute of Transportation Studies, Working Paper Series qt79v822k5, Institute of Transportation Studies, UC Davis.
    7. Elliot Fishman, 2016. "Bikeshare: A Review of Recent Literature," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 92-113, January.
    8. Yu Zhang & Zhenzhen Zhang & Andrew Lim & Melvyn Sim, 2021. "Robust Data-Driven Vehicle Routing with Time Windows," Operations Research, INFORMS, vol. 69(2), pages 469-485, March.
    9. Tobias Harks & Felix G König & Jannik Matuschke, 2013. "Approximation Algorithms for Capacitated Location Routing," Transportation Science, INFORMS, vol. 47(1), pages 3-22, February.
    10. Zhou, Yu & Kou, Gang & Guo, Zhen-Zhu & Xiao, Hui, 2023. "Availability analysis of shared bikes using abnormal trip data," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    11. Du, Mingyang & Cheng, Lin & Li, Xuefeng & Tang, Fang, 2020. "Static rebalancing optimization with considering the collection of malfunctioning bikes in free-floating bike sharing system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    12. Tönissen, D.D. & Arts, J.J., 2018. "Economies of scale in recoverable robust maintenance location routing for rolling stock," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 360-377.
    13. Ricardo Fukasawa & Qie He & Yongjia Song, 2016. "A Branch-Cut-and-Price Algorithm for the Energy Minimization Vehicle Routing Problem," Transportation Science, INFORMS, vol. 50(1), pages 23-34, February.
    14. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    15. Schiffer, Maximilian & Walther, Grit, 2018. "Strategic planning of electric logistics fleet networks: A robust location-routing approach," Omega, Elsevier, vol. 80(C), pages 31-42.
    16. Song, Jie & Zhang, Liye & Qin, Zheng & Ramli, Muhamad Azfar, 2021. "Where are public bikes? The decline of dockless bike-sharing supply in Singapore and its resulting impact on ridership activities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 72-90.
    17. Fu, Chenyi & Zhu, Ning & Ma, Shoufeng & Liu, Ronghui, 2022. "A two-stage robust approach to integrated station location and rebalancing vehicle service design in bike-sharing systems," European Journal of Operational Research, Elsevier, vol. 298(3), pages 915-938.
    18. An, Yu & Zeng, Bo & Zhang, Yu & Zhao, Long, 2014. "Reliable p-median facility location problem: two-stage robust models and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 54-72.
    19. Anirudh Subramanyam & Frank Mufalli & José M. Lí?nez-Aguirre & Jose M. Pinto & Chrysanthos E. Gounaris, 2021. "Robust Multiperiod Vehicle Routing Under Customer Order Uncertainty," Operations Research, INFORMS, vol. 69(1), pages 30-60, January.
    20. Bruno Albert Neumann-Saavedra & Teodor Gabriel Crainic & Bernard Gendron & Dirk Christian Mattfeld & Michael Römer, 2020. "Integrating Resource Management in Service Network Design for Bike-Sharing Systems," Transportation Science, INFORMS, vol. 54(5), pages 1251-1271, September.
    21. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    22. Junhong Chu & Yige Duan & Xianling Yang & Li Wang, 2021. "The Last Mile Matters: Impact of Dockless Bike Sharing on Subway Housing Price Premium," Management Science, INFORMS, vol. 67(1), pages 297-316, January.
    23. Moshe Dror & Pierre Trudeau, 1989. "Savings by Split Delivery Routing," Transportation Science, INFORMS, vol. 23(2), pages 141-145, May.
    24. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    25. Wang, Mengtong & Miao, Lixin & Zhang, Canrong, 2021. "A branch-and-price algorithm for a green location routing problem with multi-type charging infrastructure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    26. Bütün, Cihan & Petrovic, Sanja & Muyldermans, Luc, 2021. "The capacitated directed cycle hub location and routing problem under congestion," European Journal of Operational Research, Elsevier, vol. 292(2), pages 714-734.
    27. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    28. Guy Desaulniers, 2010. "Branch-and-Price-and-Cut for the Split-Delivery Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 58(1), pages 179-192, February.
    29. Annelieke C. Baller & Said Dabia & Wout E. H. Dullaert & Daniele Vigo, 2020. "The Vehicle Routing Problem with Partial Outsourcing," Transportation Science, INFORMS, vol. 54(4), pages 1034-1052, July.
    30. Roberto Baldacci & Aristide Mingozzi & Roberto Wolfler Calvo, 2011. "An Exact Method for the Capacitated Location-Routing Problem," Operations Research, INFORMS, vol. 59(5), pages 1284-1296, October.
    31. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    32. Omar El Housni & Vineet Goyal, 2021. "On the Optimality of Affine Policies for Budgeted Uncertainty Sets," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 674-711, May.
    33. Bagheri Hosseini, Mozhde & Dehghanian, Farzad & Salari, Majid, 2019. "Selective capacitated location-routing problem with incentive-dependent returns in designing used products collection network," European Journal of Operational Research, Elsevier, vol. 272(2), pages 655-673.
    34. Felipe Caro & Kumar Rajaram & Jens Wollenweber, 2012. "Process Location and Product Distribution with Uncertain Yields," Operations Research, INFORMS, vol. 60(5), pages 1050-1063, October.
    35. Alper Atamtürk & Muhong Zhang, 2007. "Two-Stage Robust Network Flow and Design Under Demand Uncertainty," Operations Research, INFORMS, vol. 55(4), pages 662-673, August.
    36. Shaheen, Susan A & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present and Future," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6qg8q6ft, Institute of Transportation Studies, UC Berkeley.
    37. Pu He & Fanyin Zheng & Elena Belavina & Karan Girotra, 2021. "Customer Preference and Station Network in the London Bike-Share System," Management Science, INFORMS, vol. 67(3), pages 1392-1412, March.
    38. Dell'Amico, Mauro & Hadjicostantinou, Eleni & Iori, Manuel & Novellani, Stefano, 2014. "The bike sharing rebalancing problem: Mathematical formulations and benchmark instances," Omega, Elsevier, vol. 45(C), pages 7-19.
    39. Neumann-Saavedra, Bruno Albert & Mattfeld, Dirk Christian & Hewitt, Mike, 2021. "Assessing the operational impact of tactical planning models for bike-sharing redistribution," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 216-235.
    40. Chang, Ximing & Wu, Jianjun & Sun, Huijun & Correia, Gonçalo Homem de Almeida & Chen, Jianhua, 2021. "Relocating operational and damaged bikes in free-floating systems: A data-driven modeling framework for level of service enhancement," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 235-260.
    41. Schuijbroek, J. & Hampshire, R.C. & van Hoeve, W.-J., 2017. "Inventory rebalancing and vehicle routing in bike sharing systems," European Journal of Operational Research, Elsevier, vol. 257(3), pages 992-1004.
    42. Vedat Bayram & Hande Yaman, 2018. "Shelter Location and Evacuation Route Assignment Under Uncertainty: A Benders Decomposition Approach," Transportation Science, INFORMS, vol. 52(2), pages 416-436, March.
    43. Bruno P. Bruck & Fábio Cruz & Manuel Iori & Anand Subramanian, 2019. "The Static Bike Sharing Rebalancing Problem with Forbidden Temporary Operations," Transportation Science, INFORMS, vol. 53(3), pages 882-896, May.
    44. Éric Gourdin & Martine Labbé & Gilbert Laporte, 2000. "The Uncapacitated Facility Location Problem with Client Matching," Operations Research, INFORMS, vol. 48(5), pages 671-685, October.
    45. Claudio Contardo & Jean-François Cordeau & Bernard Gendron, 2014. "An Exact Algorithm Based on Cut-and-Column Generation for the Capacitated Location-Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 88-102, February.
    46. R. Baldacci & E. Hadjiconstantinou & A. Mingozzi, 2004. "An Exact Algorithm for the Capacitated Vehicle Routing Problem Based on a Two-Commodity Network Flow Formulation," Operations Research, INFORMS, vol. 52(5), pages 723-738, October.
    47. Gu, Wei & Li, Meng & Wang, Chen & Shang, Jennifer & Wei, Lirong, 2021. "Strategic sourcing selection for bike-sharing rebalancing: An evolutionary game approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    48. Wang, Yong & Peng, Shouguo & Zhou, Xuesong & Mahmoudi, Monirehalsadat & Zhen, Lu, 2020. "Green logistics location-routing problem with eco-packages," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Congke & Liu, Yankui & Yang, Guoqing, 2023. "Adaptive distributionally robust hub location and routing problem with a third-party logistics strategy," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    2. Mohammed Elhenawy & Hesham A. Rakha & Youssef Bichiou & Mahmoud Masoud & Sebastien Glaser & Jack Pinnow & Ahmed Stohy, 2021. "A Feasible Solution for Rebalancing Large-Scale Bike Sharing Systems," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    3. Wang, Xu & Sun, Huijun & Zhang, Si & Lv, Ying & Li, Tongfei, 2022. "Bike sharing rebalancing problem with variable demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    4. Alain Quilliot & Antoine Sarbinowski & Hélène Toussaint, 2021. "Vehicle driven approaches for non preemptive vehicle relocation with integrated quality criterion in a vehicle sharing system," Annals of Operations Research, Springer, vol. 298(1), pages 445-468, March.
    5. Liu, Yiming & Roberto, Baldacci & Zhou, Jianwen & Yu, Yang & Zhang, Yu & Sun, Wei, 2023. "Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent green vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 310(1), pages 133-155.
    6. Jara-Díaz, Sergio & Latournerie, André & Tirachini, Alejandro & Quitral, Félix, 2022. "Optimal pricing and design of station-based bike-sharing systems: A microeconomic model," Economics of Transportation, Elsevier, vol. 31(C).
    7. Fu, Chenyi & Ma, Shoufeng & Zhu, Ning & He, Qiao-Chu & Yang, Hai, 2022. "Bike-sharing inventory management for market expansion," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 28-54.
    8. He, Xiaozhou & Wang, Qingyi, 2023. "A location-routing model for free-floating shared bike collection considering manual gathering and truck transportation," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    9. Xue Bai & Ning Ma & Kwai-Sang Chin, 2022. "Hybrid Heuristic for the Multi-Depot Static Bike Rebalancing and Collection Problem," Mathematics, MDPI, vol. 10(23), pages 1-28, December.
    10. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    11. Carlos M. Vallez & Mario Castro & David Contreras, 2021. "Challenges and Opportunities in Dock-Based Bike-Sharing Rebalancing: A Systematic Review," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    12. Ruijing Wu & Shaoxuan Liu & Zhenyang Shi, 2019. "Customer Incentive Rebalancing Plan in Free-Float Bike-Sharing System with Limited Information," Sustainability, MDPI, vol. 11(11), pages 1-24, May.
    13. Fu, Chenyi & Zhu, Ning & Ma, Shoufeng & Liu, Ronghui, 2022. "A two-stage robust approach to integrated station location and rebalancing vehicle service design in bike-sharing systems," European Journal of Operational Research, Elsevier, vol. 298(3), pages 915-938.
    14. Jiang, Zhoutong & Lei, Chao & Ouyang, Yanfeng, 2020. "Optimal investment and management of shared bikes in a competitive market," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 143-155.
    15. Jiliu Li & Zhixing Luo & Roberto Baldacci & Hu Qin & Zhou Xu, 2023. "A New Exact Algorithm for Single-Commodity Vehicle Routing with Split Pickups and Deliveries," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 31-49, January.
    16. Nixon, Denver V. & Schwanen, Tim, 2019. "Bike sharing beyond the norm," Journal of Transport Geography, Elsevier, vol. 80(C).
    17. Du, Mingyang & Cheng, Lin & Li, Xuefeng & Tang, Fang, 2020. "Static rebalancing optimization with considering the collection of malfunctioning bikes in free-floating bike sharing system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    18. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    19. Mooney, Stephen J. & Hosford, Kate & Howe, Bill & Yan, An & Winters, Meghan & Bassok, Alon & Hirsch, Jana A., 2019. "Freedom from the station: Spatial equity in access to dockless bike share," Journal of Transport Geography, Elsevier, vol. 74(C), pages 91-96.
    20. Ma, Xinwei & Zhang, Shuai & Wu, Tao & Yang, Yizhe & Yu, Jiajie, 2023. "Can dockless and docked bike-sharing substitute each other? Evidence from Nanjing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:173:y:2023:i:c:p:90-118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.