IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v117y2018ipap360-377.html
   My bibliography  Save this article

Economies of scale in recoverable robust maintenance location routing for rolling stock

Author

Listed:
  • Tönissen, D.D.
  • Arts, J.J.

Abstract

We consider the problem of locating maintenance facilities in a railway setting. Different facility sizes can be chosen for each candidate location and for each size there is an associated annual facility costs that can capture economies of scale in facility size. Because of the strategic nature of facility location, the opened facilities should be able to handle the current maintenance demand, but also the demand for any of the scenarios that can occur in the future. These scenarios capture changes such as changes to the line plan and the introduction of new rolling stock types. We allow recovery in the form of opening additional facilities, closing facilities, and increasing the facility size for each scenario. We provide a two-stage robust programming formulation. In the first-stage, we decide where to open what size of facility. In the second-stage, we solve a NP-hard maintenance location routing problem. We reformulate the problem as a mixed integer program that can be used to make an efficient column-and-constraint generation algorithm. To show that our algorithm works on practical sized instances, and to gain managerial insights, we perform a case study with instances from the Netherlands Railways. A counter intuitive insight is that economies of scale only play a limited role and that it is more important to reduce the transportation cost by building many small facilities, rather than a few large ones to profit from economies of scale.

Suggested Citation

  • Tönissen, D.D. & Arts, J.J., 2018. "Economies of scale in recoverable robust maintenance location routing for rolling stock," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 360-377.
  • Handle: RePEc:eee:transb:v:117:y:2018:i:pa:p:360-377
    DOI: 10.1016/j.trb.2018.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261517311086
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2018.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Álvarez-Miranda, Eduardo & Fernández, Elena & Ljubić, Ivana, 2015. "The recoverable robust facility location problem," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 93-120.
    2. Gopalan, Ram, 2014. "The Aircraft Maintenance Base Location Problem," European Journal of Operational Research, Elsevier, vol. 236(2), pages 634-642.
    3. Valentina Cacchiani & Alberto Caprara & Laura Galli & Leo Kroon & Gábor Maróti & Paolo Toth, 2012. "Railway Rolling Stock Planning: Robustness Against Large Disruptions," Transportation Science, INFORMS, vol. 46(2), pages 217-232, May.
    4. Shlomo Halfin & Ward Whitt, 1981. "Heavy-Traffic Limits for Queues with Many Exponential Servers," Operations Research, INFORMS, vol. 29(3), pages 567-588, June.
    5. Siyang Xie & Xi Chen & Zhaodong Wang & Yanfeng Ouyang & Kamalesh Somani & Jing Huang, 2016. "Integrated Planning for Multiple Types of Locomotive Work Facilities Under Location, Routing, and Inventory Considerations," Interfaces, INFORMS, vol. 46(5), pages 391-408, October.
    6. Sarac, Abdulkadir & Batta, Rajan & Rump, Christopher M., 2006. "A branch-and-price approach for operational aircraft maintenance routing," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1850-1869, December.
    7. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    8. Goerigk, Marc & Deghdak, Kaouthar & T’Kindt, Vincent, 2015. "A two-stage robustness approach to evacuation planning with buses," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 66-82.
    9. Thomas A. Feo & Jonathan F. Bard, 1989. "Flight Scheduling and Maintenance Base Planning," Management Science, INFORMS, vol. 35(12), pages 1415-1432, December.
    10. An, Yu & Zeng, Bo & Zhang, Yu & Zhao, Long, 2014. "Reliable p-median facility location problem: two-stage robust models and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 54-72.
    11. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    12. Gábor Maróti & Leo Kroon, 2005. "Maintenance Routing for Train Units: The Transition Model," Transportation Science, INFORMS, vol. 39(4), pages 518-525, November.
    13. Liang, Zhe & Feng, Yuan & Zhang, Xiaoning & Wu, Tao & Chaovalitwongse, Wanpracha Art, 2015. "Robust weekly aircraft maintenance routing problem and the extension to the tail assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 238-259.
    14. van den Akker, J.M. & Bouman, P.C. & Hoogeveen, J.A. & Tönissen, D.D., 2016. "Decomposition approaches for recoverable robust optimization problems," European Journal of Operational Research, Elsevier, vol. 251(3), pages 739-750.
    15. Rappold, James A. & Van Roo, Ben D., 2009. "Designing multi-echelon service parts networks with finite repair capacity," European Journal of Operational Research, Elsevier, vol. 199(3), pages 781-792, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tönissen, D.D. & Arts, J.J., 2020. "The stochastic maintenance location routing allocation problem for rolling stock," International Journal of Production Economics, Elsevier, vol. 230(C).
    2. Huang, Sen & Liu, Kanglin & Zhang, Zhi-Hai, 2023. "Column-and-constraint-generation-based approach to a robust reverse logistic network design for bike sharing," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 90-118.
    3. Lin, Boliang & Shen, Yaoming & Wang, Zhongkai & Ni, Shaoquan & Zhao, Yinan, 2023. "An iterative improvement approach for high-speed train maintenance scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 292-312.
    4. Zanyang Cui & Zhimei Wang & Junhua Chen & Xingchen Zhang & Chunxiao Zhao, 2023. "Integrated Planning for Depot Location and Line Planning Problems in the Intercity Railway Network with Passenger Demand Uncertainty," Sustainability, MDPI, vol. 15(20), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tönissen, D.D. & Arts, J.J., 2020. "The stochastic maintenance location routing allocation problem for rolling stock," International Journal of Production Economics, Elsevier, vol. 230(C).
    2. Denise D. Tönissen & Joachim J. Arts & Zuo-Jun (Max) Shen, 2019. "Maintenance Location Routing for Rolling Stock Under Line and Fleet Planning Uncertainty," Transportation Science, INFORMS, vol. 53(5), pages 1252-1270, September.
    3. Basciftci, Beste & Ahmed, Shabbir & Shen, Siqian, 2021. "Distributionally robust facility location problem under decision-dependent stochastic demand," European Journal of Operational Research, Elsevier, vol. 292(2), pages 548-561.
    4. Shaukat, Syed & Katscher, Mathias & Wu, Cheng-Lung & Delgado, Felipe & Larrain, Homero, 2020. "Aircraft line maintenance scheduling and optimisation," Journal of Air Transport Management, Elsevier, vol. 89(C).
    5. Xiao, Fan & Guo, Siqi & Huang, Lin & Huang, Lei & Liang, Zhe, 2022. "Integrated aircraft tail assignment and cargo routing problem with through cargo consideration," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 328-351.
    6. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    7. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    8. Canca, David & Barrena, Eva, 2018. "The integrated rolling stock circulation and depot location problem in railway rapid transit systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 115-138.
    9. Maher, Stephen J. & Desaulniers, Guy & Soumis, François, 2018. "The daily tail assignment problem under operational uncertainty using look-ahead maintenance constraints," European Journal of Operational Research, Elsevier, vol. 264(2), pages 534-547.
    10. Sciau, Jean-Baptiste & Goyon, Agathe & Sarazin, Alexandre & Bascans, Jérémy & Prud’homme, Charles & Lorca, Xavier, 2024. "Using constraint programming to address the operational aircraft line maintenance scheduling problem," Journal of Air Transport Management, Elsevier, vol. 115(C).
    11. Sato, Keisuke & Fukumura, Naoto, 2012. "Real-time freight locomotive rescheduling and uncovered train detection during disruption," European Journal of Operational Research, Elsevier, vol. 221(3), pages 636-648.
    12. Cheng, Chun & Qi, Mingyao & Zhang, Ying & Rousseau, Louis-Martin, 2018. "A two-stage robust approach for the reliable logistics network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 185-202.
    13. Deng, Qichen & Santos, Bruno F. & Curran, Richard, 2020. "A practical dynamic programming based methodology for aircraft maintenance check scheduling optimization," European Journal of Operational Research, Elsevier, vol. 281(2), pages 256-273.
    14. Schuster Puga, Matías & Minner, Stefan & Tancrez, Jean-Sébastien, 2019. "Two-stage supply chain design with safety stock placement decisions," International Journal of Production Economics, Elsevier, vol. 209(C), pages 183-193.
    15. Sterle, Claudio & Sforza, Antonio & Esposito Amideo, Annunziata, 2016. "Multi-period location of flow intercepting portable facilities of an intelligent transportation system," Socio-Economic Planning Sciences, Elsevier, vol. 53(C), pages 4-13.
    16. Gaigné, C. & Hovelaque, V. & Mechouar, Y., 2020. "Carbon tax and sustainable facility location: The role of production technology," International Journal of Production Economics, Elsevier, vol. 224(C).
    17. Carlos Lagos & Felipe Delgado & Mathias A. Klapp, 2020. "Dynamic Optimization for Airline Maintenance Operations," Transportation Science, INFORMS, vol. 54(4), pages 998-1015, July.
    18. Luca Bertazzi & Francesca Maggioni, 2015. "Solution Approaches for the Stochastic Capacitated Traveling Salesmen Location Problem with Recourse," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 321-342, July.
    19. Wu, Shanhua & Yang, Zhongzhen, 2018. "Locating manufacturing industries by flow-capturing location model – Case of Chinese steel industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 112(C), pages 1-11.
    20. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:117:y:2018:i:pa:p:360-377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.