IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v46y2016i5p391-408.html
   My bibliography  Save this article

Integrated Planning for Multiple Types of Locomotive Work Facilities Under Location, Routing, and Inventory Considerations

Author

Listed:
  • Siyang Xie

    (Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801)

  • Xi Chen

    (Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801)

  • Zhaodong Wang

    (Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801)

  • Yanfeng Ouyang

    (Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801)

  • Kamalesh Somani

    (CSX Transportation Inc., Jacksonville, Florida 32202)

  • Jing Huang

    (CSX Transportation Inc., Jacksonville, Florida 32202)

Abstract

In North America, thousands of locomotives operating in the railroad network require various types of mechanical work every day. This work may be unscheduled, periodic, or on demand and could be conducted at either a fixed facility or a movable facility. Each facility is characterized by the type of work it can provide. The long-term infrastructure planning of these facilities is vital to the efficiency of the railroad. In this paper, we develop a large-scale mixed-integer mathematical model for infrastructure planning. The model integrates and optimizes decisions about (1) Locations, capabilities, and capacities of fixed facilities, (2) Home locations and routing plans of movable facilities, and (3) Assignments of locomotive work demands to facilities. We propose a decomposition-based heuristic solution framework consisting of several underlying algorithms to solve this large-scale optimization model. Computational results on numerous scenario studies using field data from the railroad industry show that the proposed model and algorithms are capable of providing solutions that are significantly superior to the current practice. The successful application of our methodology to real-world railroad planning has clearly demonstrated the substantial cost-saving benefits of our models on infrastructure planning solutions.

Suggested Citation

  • Siyang Xie & Xi Chen & Zhaodong Wang & Yanfeng Ouyang & Kamalesh Somani & Jing Huang, 2016. "Integrated Planning for Multiple Types of Locomotive Work Facilities Under Location, Routing, and Inventory Considerations," Interfaces, INFORMS, vol. 46(5), pages 391-408, October.
  • Handle: RePEc:inm:orinte:v:46:y:2016:i:5:p:391-408
    DOI: 10.1287/inte.2016.0857
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.2016.0857
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2016.0857?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ann Melissa Campbell & Martin W. P. Savelsbergh, 2004. "A Decomposition Approach for the Inventory-Routing Problem," Transportation Science, INFORMS, vol. 38(4), pages 488-502, November.
    2. Andrew J. Clark & Herbert Scarf, 2004. "Optimal Policies for a Multi-Echelon Inventory Problem," Management Science, INFORMS, vol. 50(12_supple), pages 1782-1790, December.
    3. P P Zouein & W R Abillama & E Tohme, 2002. "A multiple period capacitated inventory model for airline fuel management: a case study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(4), pages 379-386, April.
    4. Tony J. Van Roy, 1986. "A Cross Decomposition Algorithm for Capacitated Facility Location," Operations Research, INFORMS, vol. 34(1), pages 145-163, February.
    5. Martin Desrochers & Jacques Desrosiers & Marius Solomon, 1992. "A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 40(2), pages 342-354, April.
    6. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    7. Laporte, Gilbert & Nobert, Yves, 1981. "An exact algorithm for minimizing routing and operating costs in depot location," European Journal of Operational Research, Elsevier, vol. 6(2), pages 224-226, February.
    8. Mazzola, Joseph B. & Neebe, Alan W., 1999. "Lagrangian-relaxation-based solution procedures for a multiproduct capacitated facility location problem with choice of facility type," European Journal of Operational Research, Elsevier, vol. 115(2), pages 285-299, June.
    9. Ahmadi-Javid, Amir & Seddighi, Amir Hossein, 2013. "A location-routing problem with disruption risk," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 63-82.
    10. Nourbakhsh, Seyed Mohammad & Ouyang, Yanfeng, 2010. "Optimal fueling strategies for locomotive fleets in railroad networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1104-1114, September.
    11. R. K. Ahuja & J. B. Orlin & S. Pallottino & M. P. Scaparra & M. G. Scutellà, 2004. "A Multi-Exchange Heuristic for the Single-Source Capacitated Facility Location Problem," Management Science, INFORMS, vol. 50(6), pages 749-760, June.
    12. D Sariklis & S Powell, 2000. "A heuristic method for the open vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(5), pages 564-573, May.
    13. Laporte, Gilbert & Louveaux, Francois & Mercure, Helene, 1989. "Models and exact solutions for a class of stochastic location-routing problems," European Journal of Operational Research, Elsevier, vol. 39(1), pages 71-78, March.
    14. Kuby, Michael & Lim, Seow, 2005. "The flow-refueling location problem for alternative-fuel vehicles," Socio-Economic Planning Sciences, Elsevier, vol. 39(2), pages 125-145, June.
    15. Ichoua, Soumia & Gendreau, Michel & Potvin, Jean-Yves, 2003. "Vehicle dispatching with time-dependent travel times," European Journal of Operational Research, Elsevier, vol. 144(2), pages 379-396, January.
    16. Michael Kuby & Seow Lim, 2007. "Location of Alternative-Fuel Stations Using the Flow-Refueling Location Model and Dispersion of Candidate Sites on Arcs," Networks and Spatial Economics, Springer, vol. 7(2), pages 129-152, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tönissen, D.D. & Arts, J.J., 2020. "The stochastic maintenance location routing allocation problem for rolling stock," International Journal of Production Economics, Elsevier, vol. 230(C).
    2. Tönissen, D.D. & Arts, J.J., 2018. "Economies of scale in recoverable robust maintenance location routing for rolling stock," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 360-377.
    3. Yılmaz, Seren Bilge & Yücel, Eda, 2021. "Optimizing onboard catering loading locations and plans for airlines," Omega, Elsevier, vol. 99(C).
    4. Ningxuan Kang & Hao Shen & Ye Xu, 2022. "JD.com Improves Delivery Networks by a Multiperiod Facility Location Model," Interfaces, INFORMS, vol. 52(2), pages 133-148, March.
    5. Zanyang Cui & Zhimei Wang & Junhua Chen & Xingchen Zhang & Chunxiao Zhao, 2023. "Integrated Planning for Depot Location and Line Planning Problems in the Intercity Railway Network with Passenger Demand Uncertainty," Sustainability, MDPI, vol. 15(20), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    2. V. Prem Kumar & Michel Bierlaire, 2015. "Optimizing Fueling Decisions for Locomotives in Railroad Networks," Transportation Science, INFORMS, vol. 49(1), pages 149-159, February.
    3. Kuby, Michael & Capar, Ismail & Kim, Jong-Geun, 2017. "Efficient and equitable transnational infrastructure planning for natural gas trucking in the European Union," European Journal of Operational Research, Elsevier, vol. 257(3), pages 979-991.
    4. David Schindl & Nicolas Zufferey, 2015. "A learning tabu search for a truck allocation problem with linear and nonlinear cost components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(1), pages 32-45, February.
    5. Nourbakhsh, Seyed Mohammad & Ouyang, Yanfeng, 2010. "Optimal fueling strategies for locomotive fleets in railroad networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1104-1114, September.
    6. Kazemi, Ahmad & Ernst, Andreas T. & Krishnamoorthy, Mohan & Le Bodic, Pierre, 2021. "Locomotive fuel management with inline refueling," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1077-1096.
    7. Yılmaz, Seren Bilge & Yücel, Eda, 2021. "Optimizing onboard catering loading locations and plans for airlines," Omega, Elsevier, vol. 99(C).
    8. Amin Aghalari & Darweesh Ehssan Salamah & Carlos Marino & Mohammad Marufuzzaman, 2023. "Electric vehicles fast charger location-routing problem under ambient temperature," Annals of Operations Research, Springer, vol. 324(1), pages 721-759, May.
    9. Lee, Chungmok & Han, Jinil, 2017. "Benders-and-Price approach for electric vehicle charging station location problem under probabilistic travel range," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 130-152.
    10. Chung, Sung Hoon & Kwon, Changhyun, 2015. "Multi-period planning for electric car charging station locations: A case of Korean Expressways," European Journal of Operational Research, Elsevier, vol. 242(2), pages 677-687.
    11. Jeffrey W. Ohlmann & Michael J. Fry & Barrett W. Thomas, 2008. "Route Design for Lean Production Systems," Transportation Science, INFORMS, vol. 42(3), pages 352-370, August.
    12. Zhu, Zhi-Hong & Gao, Zi-You & Zheng, Jian-Feng & Du, Hao-Ming, 2016. "Charging station location problem of plug-in electric vehicles," Journal of Transport Geography, Elsevier, vol. 52(C), pages 11-22.
    13. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2020. "Location optimisation method for fast-charging stations along national roads," Journal of Transport Geography, Elsevier, vol. 88(C).
    14. Capelle, Thomas & Cortés, Cristián E. & Gendreau, Michel & Rey, Pablo A. & Rousseau, Louis-Martin, 2019. "A column generation approach for location-routing problems with pickup and delivery," European Journal of Operational Research, Elsevier, vol. 272(1), pages 121-131.
    15. Yueyue Fan & Allen Lee & Nathan Parker & Daniel Scheitrum & Rosa Dominguez-Faus & Amy Myers Jaffe & Kenneth Medlock III, 2017. "Geospatial, Temporal and Economic Analysis of Alternative Fuel Infrastructure: The case of freight and U.S. natural gas markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    16. Shihui Tian & Guowei Hua & T. C. E. Cheng, 2019. "Optimal Deployment of Charging Piles for Electric Vehicles Under the Indirect Network Effects," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(01), pages 1-17, February.
    17. Hosseini, Meysam & MirHassani, S.A., 2015. "Refueling-station location problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 101-116.
    18. Theodore Athanasopoulos & Ioannis Minis, 2013. "Efficient techniques for the multi-period vehicle routing problem with time windows within a branch and price framework," Annals of Operations Research, Springer, vol. 206(1), pages 1-22, July.
    19. Hunkar Toyoglu & Oya Ekin Karasan & Bahar Yetis Kara, 2011. "Distribution network design on the battlefield," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(3), pages 188-209, April.
    20. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:46:y:2016:i:5:p:391-408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.