Author
Listed:
- Shlomo Halfin
(Bell Laboratories, Holmdel, New Jersey)
- Ward Whitt
(Bell Laboratories, Holmdel, New Jersey)
Abstract
Two different kinds of heavy-traffic limit theorems have been proved for s -server queues. The first kind involves a sequence of queueing systems having a fixed number of servers with an associated sequence of traffic intensities that converges to the critical value of one from below. The second kind, which is often not thought of as heavy traffic, involves a sequence of queueing systems in which the associated sequences of arrival rates and numbers of servers go to infinity while the service time distributions and the traffic intensities remain fixed, with the traffic intensities being less than the critical value of one. In each case the sequence of random variables depicting the steady-state number of customers waiting or being served diverges to infinity but converges to a nondegenerate limit after appropriate normalization. However, in an important respect neither procedure adequately represents a typical queueing system in practice because in the (heavy-traffic) limit an arriving customer is either almost certain to be delayed (first procedure) or almost certain not to be delayed (second procedure). Hence, we consider a sequence of ( GI / M / S ) systems in which the traffic intensities converge to one from below, the arrival rates and the numbers of servers go to infinity, but the steady-state probabilities that all servers are busy are held fixed. The limits in this case are hybrids of the limits in the other two cases. Numerical comparisons indicate that the resulting approximation is better than the earlier ones for many-server systems operating at typically encountered loads.
Suggested Citation
Shlomo Halfin & Ward Whitt, 1981.
"Heavy-Traffic Limits for Queues with Many Exponential Servers,"
Operations Research, INFORMS, vol. 29(3), pages 567-588, June.
Handle:
RePEc:inm:oropre:v:29:y:1981:i:3:p:567-588
DOI: 10.1287/opre.29.3.567
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:29:y:1981:i:3:p:567-588. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.