IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v272y2019i2p655-673.html
   My bibliography  Save this article

Selective capacitated location-routing problem with incentive-dependent returns in designing used products collection network

Author

Listed:
  • Bagheri Hosseini, Mozhde
  • Dehghanian, Farzad
  • Salari, Majid

Abstract

This paper addresses a generalization of the capacitated location-routing problem (CLRP) arising in the design of a collection network for a company engaged in collecting used products from customer zones. The company offers customers a financial incentive per unit of used products. This incentive determines the quantity of used products which are returned by customers. Moreover, it is not necessary for the company to visit all customer zones or to collect all returns in each visited customer zone. The objective is to simultaneously find the location of collection centers, the routes of vehicles, the value of incentive offered and the amount of used products collected from customer zones, so as to maximize the company's overall profit. We develop two mixed integer linear programming formulations of the problem and a heuristic algorithm based on iterated local search. Extensive computational experiments on this problem demonstrate the effectiveness of the proposed algorithm.

Suggested Citation

  • Bagheri Hosseini, Mozhde & Dehghanian, Farzad & Salari, Majid, 2019. "Selective capacitated location-routing problem with incentive-dependent returns in designing used products collection network," European Journal of Operational Research, Elsevier, vol. 272(2), pages 655-673.
  • Handle: RePEc:eee:ejores:v:272:y:2019:i:2:p:655-673
    DOI: 10.1016/j.ejor.2018.06.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718305733
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nagy, Gabor & Salhi, Said, 2007. "Location-routing: Issues, models and methods," European Journal of Operational Research, Elsevier, vol. 177(2), pages 649-672, March.
    2. Karaoglan, Ismail & Altiparmak, Fulya & Kara, Imdat & Dengiz, Berna, 2012. "The location-routing problem with simultaneous pickup and delivery: Formulations and a heuristic approach," Omega, Elsevier, vol. 40(4), pages 465-477.
    3. Kaya, Onur, 2010. "Incentive and production decisions for remanufacturing operations," European Journal of Operational Research, Elsevier, vol. 201(2), pages 442-453, March.
    4. Markus Klausner & Chris T. Hendrickson, 2000. "Reverse-Logistics Strategy for Product Take-Back," Interfaces, INFORMS, vol. 30(3), pages 156-165, June.
    5. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    6. Salhi, Said & Rand, Graham K., 1989. "The effect of ignoring routes when locating depots," European Journal of Operational Research, Elsevier, vol. 39(2), pages 150-156, March.
    7. Shad Dowlatshahi, 2000. "Developing a Theory of Reverse Logistics," Interfaces, INFORMS, vol. 30(3), pages 143-155, June.
    8. Roberto Baldacci & Aristide Mingozzi & Roberto Wolfler Calvo, 2011. "An Exact Method for the Capacitated Location-Routing Problem," Operations Research, INFORMS, vol. 59(5), pages 1284-1296, October.
    9. G. Dantzig & R. Fulkerson & S. Johnson, 1954. "Solution of a Large-Scale Traveling-Salesman Problem," Operations Research, INFORMS, vol. 2(4), pages 393-410, November.
    10. M Labbé & I Rodríguez-Martin & J J Salazar-González, 2004. "A branch-and-cut algorithm for the plant-cycle location problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(5), pages 513-520, May.
    11. Aras, Necati & Aksen, Deniz & Gönül Tanugur, Ayse, 2008. "Locating collection centers for incentive-dependent returns under a pick-up policy with capacitated vehicles," European Journal of Operational Research, Elsevier, vol. 191(3), pages 1223-1240, December.
    12. Prodhon, Caroline & Prins, Christian, 2014. "A survey of recent research on location-routing problems," European Journal of Operational Research, Elsevier, vol. 238(1), pages 1-17.
    13. Srivastava, R, 1993. "Alternate solution procedures for the location-routing problem," Omega, Elsevier, vol. 21(4), pages 497-506, July.
    14. de Figueiredo, João Neiva & Mayerle, Sérgio Fernando, 2008. "Designing minimum-cost recycling collection networks with required throughput," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(5), pages 731-752, September.
    15. Moshref-Javadi, Mohammad & Lee, Seokcheon, 2016. "The Latency Location-Routing Problem," European Journal of Operational Research, Elsevier, vol. 255(2), pages 604-619.
    16. Barreto, Sergio & Ferreira, Carlos & Paixao, Jose & Santos, Beatriz Sousa, 2007. "Using clustering analysis in a capacitated location-routing problem," European Journal of Operational Research, Elsevier, vol. 179(3), pages 968-977, June.
    17. Mina, Hokey & Jayaraman, Vaidyanathan & Srivastava, Rajesh, 1998. "Combined location-routing problems: A synthesis and future research directions," European Journal of Operational Research, Elsevier, vol. 108(1), pages 1-15, July.
    18. Aras, Necati & Aksen, Deniz, 2008. "Locating collection centers for distance- and incentive-dependent returns," International Journal of Production Economics, Elsevier, vol. 111(2), pages 316-333, February.
    19. Hansen, P. H. & Hegedahl, B. & Hjortkjaer, S. & Obel, B., 1994. "A heuristic solution to the warehouse location-routing problem," European Journal of Operational Research, Elsevier, vol. 76(1), pages 111-127, July.
    20. Aksen, Deniz & Aras, Necati & Karaarslan, Ayse Gönül, 2009. "Design and analysis of government subsidized collection systems for incentive-dependent returns," International Journal of Production Economics, Elsevier, vol. 119(2), pages 308-327, June.
    21. De Giovanni, Pietro & Reddy, Puduru V. & Zaccour, Georges, 2016. "Incentive strategies for an optimal recovery program in a closed-loop supply chain," European Journal of Operational Research, Elsevier, vol. 249(2), pages 605-617.
    22. Escobar, John Willmer & Linfati, Rodrigo & Baldoquin, Maria G. & Toth, Paolo, 2014. "A Granular Variable Tabu Neighborhood Search for the capacitated location-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 344-356.
    23. V. Daniel R. Guide, Jr. & Ruud H. Teunter & Luk N. Van Wassenhove, 2003. "Matching Demand and Supply to Maximize Profits from Remanufacturing," Manufacturing & Service Operations Management, INFORMS, vol. 5(4), pages 303-316, October.
    24. Vera Hemmelmayr & Karen Smilowitz & Luis de la Torre, 2017. "A periodic location routing problem for collaborative recycling," IISE Transactions, Taylor & Francis Journals, vol. 49(4), pages 414-428, April.
    25. Allahyari, Somayeh & Salari, Majid & Vigo, Daniele, 2015. "A hybrid metaheuristic algorithm for the multi-depot covering tour vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 242(3), pages 756-768.
    26. Ting, Ching-Jung & Chen, Chia-Ho, 2013. "A multiple ant colony optimization algorithm for the capacitated location routing problem," International Journal of Production Economics, Elsevier, vol. 141(1), pages 34-44.
    27. Tuzun, Dilek & Burke, Laura I., 1999. "A two-phase tabu search approach to the location routing problem," European Journal of Operational Research, Elsevier, vol. 116(1), pages 87-99, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ítalo Ruan Barbosa de Aquino & Josenildo Ferreira da Silva Junior & Patricia Guarnieri & Lucio Camara e Silva, 2020. "The Proposition of a Mathematical Model for the Location of Electrical and Electronic Waste Collection Points," Sustainability, MDPI, Open Access Journal, vol. 13(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Schneider & Michael Drexl, 2017. "A survey of the standard location-routing problem," Annals of Operations Research, Springer, vol. 259(1), pages 389-414, December.
    2. Alvarez, Jose A. Lopez & Buijs, Paul & Deluster, Rogier & Coelho, Leandro C. & Ursavas, Evrim, 2020. "Strategic and operational decision-making in expanding supply chains for LNG as a fuel," Omega, Elsevier, vol. 97(C).
    3. Drexl, M. & Schneider, M., 2014. "A Survey of the Standard Location-Routing Problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65940, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Paolo Gianessi & Laurent Alfandari & Lucas Létocart & Roberto Wolfler Calvo, 2016. "The Multicommodity-Ring Location Routing Problem," Transportation Science, INFORMS, vol. 50(2), pages 541-558, May.
    5. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    6. Michael Schneider & Maximilian Löffler, 2019. "Large Composite Neighborhoods for the Capacitated Location-Routing Problem," Service Science, INFORMS, vol. 53(1), pages 301-318, February.
    7. Ting, Ching-Jung & Chen, Chia-Ho, 2013. "A multiple ant colony optimization algorithm for the capacitated location routing problem," International Journal of Production Economics, Elsevier, vol. 141(1), pages 34-44.
    8. Menezes, Mozart B.C. & Ruiz-Hernández, Diego & Verter, Vedat, 2016. "A rough-cut approach for evaluating location-routing decisions via approximation algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 89-106.
    9. Nasrin Asgari & Mohsen Rajabi & Masoumeh Jamshidi & Maryam Khatami & Reza Zanjirani Farahani, 2017. "A memetic algorithm for a multi-objective obnoxious waste location-routing problem: a case study," Annals of Operations Research, Springer, vol. 250(2), pages 279-308, March.
    10. Zhang, Ying & Qi, Mingyao & Lin, Wei-Hua & Miao, Lixin, 2015. "A metaheuristic approach to the reliable location routing problem under disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 90-110.
    11. Nadizadeh, Ali & Hosseini Nasab, Hasan, 2014. "Solving the dynamic capacitated location-routing problem with fuzzy demands by hybrid heuristic algorithm," European Journal of Operational Research, Elsevier, vol. 238(2), pages 458-470.
    12. Karaoglan, Ismail & Altiparmak, Fulya & Kara, Imdat & Dengiz, Berna, 2011. "A branch and cut algorithm for the location-routing problem with simultaneous pickup and delivery," European Journal of Operational Research, Elsevier, vol. 211(2), pages 318-332, June.
    13. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    14. Zhu, Stuart X. & Ursavas, Evrim, 2018. "Design and analysis of a satellite network with direct delivery in the pharmaceutical industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 190-207.
    15. Hunkar Toyoglu & Oya Ekin Karasan & Bahar Yetis Kara, 2011. "Distribution network design on the battlefield," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(3), pages 188-209, April.
    16. Prodhon, Caroline & Prins, Christian, 2014. "A survey of recent research on location-routing problems," European Journal of Operational Research, Elsevier, vol. 238(1), pages 1-17.
    17. Younes Rahmani & Wahiba Ramdane Cherif-Khettaf & Ammar Oulamara, 2016. "The two-echelon multi-products location-routing problem with pickup and delivery: formulation and heuristic approaches," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 999-1019, February.
    18. Karaoglan, Ismail & Altiparmak, Fulya & Kara, Imdat & Dengiz, Berna, 2012. "The location-routing problem with simultaneous pickup and delivery: Formulations and a heuristic approach," Omega, Elsevier, vol. 40(4), pages 465-477.
    19. Patrick Schittekat & Kenneth Sörensen, 2009. "OR Practice---Supporting 3PL Decisions in the Automotive Industry by Generating Diverse Solutions to a Large-Scale Location-Routing Problem," Operations Research, INFORMS, vol. 57(5), pages 1058-1067, October.
    20. Capelle, Thomas & Cortés, Cristián E. & Gendreau, Michel & Rey, Pablo A. & Rousseau, Louis-Martin, 2019. "A column generation approach for location-routing problems with pickup and delivery," European Journal of Operational Research, Elsevier, vol. 272(1), pages 121-131.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:272:y:2019:i:2:p:655-673. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.