IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v146y2021icp72-90.html
   My bibliography  Save this article

Where are public bikes? The decline of dockless bike-sharing supply in Singapore and its resulting impact on ridership activities

Author

Listed:
  • Song, Jie
  • Zhang, Liye
  • Qin, Zheng
  • Ramli, Muhamad Azfar

Abstract

Active mobility modes have become a significant alternative mode of transport within all major urban cities. This could be partly attributed to the rise and fall of dockless bike-sharing services in the last three years which significantly changed the transport ecosystem in these cities. However, the various complex relationships between the supply of bike-sharing services, the generated demand as well as the cycling dynamics and behavior of subscribers is not well understood. In this article, we examine how the changes in bike supply impacted the cycling activities of a dockless bike-sharing system in Singapore. We employed a clustering algorithm and modelled the network community detection tool into a three-month cycling GPS dataset and compared the spatiotemporal pattern and network structures of biking journeys for two major time periods (1) January 2019 and (2) March 2019 between which a significant number of bike-sharing companies exited the industry. This resulted in a drastic drop in the number of available shared bikes for the latter period. Our results show that prior to the decline of the bike supply, we identified three types of bike journeys that shared similar temporal patterns, indicating different riders, namely casual, moderate, or enthusiastic users. Over 90 percentage of enthusiastic riders disappeared after the supply of public bikes decreased. Our network analysis further showed that nine out of ten observed communities either contracted or collapsed after the supply downsize. We therefore hope that urban and transportation planners and scientists would be able to use these findings to further understand the dynamics of supply demand of bike-sharing systems and help improve planning considerations in the future.

Suggested Citation

  • Song, Jie & Zhang, Liye & Qin, Zheng & Ramli, Muhamad Azfar, 2021. "Where are public bikes? The decline of dockless bike-sharing supply in Singapore and its resulting impact on ridership activities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 72-90.
  • Handle: RePEc:eee:transa:v:146:y:2021:i:c:p:72-90
    DOI: 10.1016/j.tra.2021.01.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856421000161
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2021.01.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Faghih-Imani, Ahmadreza & Hampshire, Robert & Marla, Lavanya & Eluru, Naveen, 2017. "An empirical analysis of bike sharing usage and rebalancing: Evidence from Barcelona and Seville," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 177-191.
    2. Lee, Sangwon & Marcu, Mircea & Lee, Seonmi, 2011. "An empirical analysis of fixed and mobile broadband diffusion," Information Economics and Policy, Elsevier, vol. 23(3), pages 227-233.
    3. Corcoran, Jonathan & Li, Tiebei & Rohde, David & Charles-Edwards, Elin & Mateo-Babiano, Derlie, 2014. "Spatio-temporal patterns of a Public Bicycle Sharing Program: the effect of weather and calendar events," Journal of Transport Geography, Elsevier, vol. 41(C), pages 292-305.
    4. Tien Dung Tran & Nicolas Ovtracht & Bruno Faivre d'Arcier, 2015. "Modeling Bike Sharing System using Built Environment Factors," Post-Print halshs-01474166, HAL.
    5. Shaheen, Susan PhD & Chan, Nelson, 2016. "Mobility and the Sharing Economy: Potential to Overcome First- and Last-Mile Public Transit Connections," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8042k3d7, Institute of Transportation Studies, UC Berkeley.
    6. Christine Fricker & Nicolas Gast, 2016. "Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 261-291, August.
    7. Xiaolu Zhou, 2015. "Understanding Spatiotemporal Patterns of Biking Behavior by Analyzing Massive Bike Sharing Data in Chicago," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-20, October.
    8. Jin, Sheng & Qu, Xiaobo & Zhou, Dan & Xu, Cheng & Ma, Dongfang & Wang, Dianhai, 2015. "Estimating cycleway capacity and bicycle equivalent unit for electric bicycles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 225-248.
    9. Delmelle, Eric M. & Delmelle, Elizabeth Cahill, 2012. "Exploring spatio-temporal commuting patterns in a university environment," Transport Policy, Elsevier, vol. 21(C), pages 1-9.
    10. Erdoğan, Güneş & Battarra, Maria & Wolfler Calvo, Roberto, 2015. "An exact algorithm for the static rebalancing problem arising in bicycle sharing systems," European Journal of Operational Research, Elsevier, vol. 245(3), pages 667-679.
    11. Liu, Hung-Chi & Lin, Jen-Jia, 2019. "Associations of built environments with spatiotemporal patterns of public bicycle use," Journal of Transport Geography, Elsevier, vol. 74(C), pages 299-312.
    12. Martin Zaltz Austwick & Oliver O’Brien & Emanuele Strano & Matheus Viana, 2013. "The Structure of Spatial Networks and Communities in Bicycle Sharing Systems," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-17, September.
    13. Zhang, Ying & Thomas, Tom & Brussel, Mark & van Maarseveen, Martin, 2017. "Exploring the impact of built environment factors on the use of public bikes at bike stations: Case study in Zhongshan, China," Journal of Transport Geography, Elsevier, vol. 58(C), pages 59-70.
    14. Faghih-Imani, Ahmadreza & Eluru, Naveen & El-Geneidy, Ahmed M. & Rabbat, Michael & Haq, Usama, 2014. "How land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal," Journal of Transport Geography, Elsevier, vol. 41(C), pages 306-314.
    15. Caulfield, Brian & O'Mahony, Margaret & Brazil, William & Weldon, Peter, 2017. "Examining usage patterns of a bike-sharing scheme in a medium sized city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 152-161.
    16. Martens, Karel, 2007. "Promoting bike-and-ride: The Dutch experience," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 326-338, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Chang & Li, Xiang & Chen, Lujie, 2023. "Modelling the effects of metro and bike-sharing cooperation: Cost-sharing mode vs information-sharing mode," International Journal of Production Economics, Elsevier, vol. 261(C).
    2. Huang, Sen & Liu, Kanglin & Zhang, Zhi-Hai, 2023. "Column-and-constraint-generation-based approach to a robust reverse logistic network design for bike sharing," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 90-118.
    3. Liu, Xize & Chen, Wendong & Chen, Xuewu & Chen, Jingxu & Cheng, Long, 2024. "Could free-floating bikeshare weed out station-based bikeshare? Analyzing the relationship between two bikeshare systems from bivariate flow clustering," Journal of Transport Geography, Elsevier, vol. 118(C).
    4. Xi Lu & Jiaqing Lu & Xinzheng Yang & Xumei Chen, 2022. "Assessment of Urban Mobility via a Pressure-State-Response (PSR) Model with the IVIF-AHP and FCE Methods: A Case Study of Beijing, China," Sustainability, MDPI, vol. 14(5), pages 1-23, March.
    5. Ji, Shujuan & Wang, Xin & Lyu, Tao & Liu, Xiaojie & Wang, Yuanqing & Heinen, Eva & Sun, Zhenwei, 2022. "Understanding cycling distance according to the prediction of the XGBoost and the interpretation of SHAP: A non-linear and interaction effect analysis," Journal of Transport Geography, Elsevier, vol. 103(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Yao & Yifang Zhang & Lixin Tian & Nianxing Zhou & Zhilin Li & Minggang Wang, 2019. "Analysis of Network Structure of Urban Bike-Sharing System: A Case Study Based on Real-Time Data of a Public Bicycle System," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    2. Liu, Hung-Chi & Lin, Jen-Jia, 2019. "Associations of built environments with spatiotemporal patterns of public bicycle use," Journal of Transport Geography, Elsevier, vol. 74(C), pages 299-312.
    3. Saberi, Meead & Ghamami, Mehrnaz & Gu, Yi & Shojaei, Mohammad Hossein (Sam) & Fishman, Elliot, 2018. "Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London," Journal of Transport Geography, Elsevier, vol. 66(C), pages 154-166.
    4. Kumar Dey, Bibhas & Anowar, Sabreena & Eluru, Naveen, 2021. "A framework for estimating bikeshare origin destination flows using a multiple discrete continuous system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 119-133.
    5. Liu, Hung-Chi & Lin, Jen-Jia, 2022. "Associations of built environments with spatiotemporal patterns of shared scooter use: A comparison with shared bike use," Transport Policy, Elsevier, vol. 126(C), pages 107-119.
    6. Willberg, Elias & Salonen, Maria & Toivonen, Tuuli, 2021. "What do trip data reveal about bike-sharing system users?," Journal of Transport Geography, Elsevier, vol. 91(C).
    7. Zhao, De & Ong, Ghim Ping & Wang, Wei & Hu, Xiao Jian, 2019. "Effect of built environment on shared bicycle reallocation: A case study on Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 73-88.
    8. Zhang, Yongping & Mi, Zhifu, 2018. "Environmental benefits of bike sharing: A big data-based analysis," Applied Energy, Elsevier, vol. 220(C), pages 296-301.
    9. Radzimski, Adam & Dzięcielski, Michał, 2021. "Exploring the relationship between bike-sharing and public transport in Poznań, Poland," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 189-202.
    10. Ding, Hongliang & Lu, Yuhuan & Sze, N.N. & Li, Haojie, 2022. "Effect of dockless bike-sharing scheme on the demand for London Cycle Hire at the disaggregate level using a deep learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 150-163.
    11. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    12. Todd, James & O'Brien, Oliver & Cheshire, James, 2021. "A global comparison of bicycle sharing systems," Journal of Transport Geography, Elsevier, vol. 94(C).
    13. Fabio Kon & Éderson Cássio Ferreira & Higor Amario Souza & Fábio Duarte & Paolo Santi & Carlo Ratti, 2022. "Abstracting mobility flows from bike-sharing systems," Public Transport, Springer, vol. 14(3), pages 545-581, October.
    14. De Zhao & Ghim Ping Ong & Wei Wang & Wei Zhou, 2021. "Estimating Public Bicycle Trip Characteristics with Consideration of Built Environment Data," Sustainability, MDPI, vol. 13(2), pages 1-13, January.
    15. Namkung, Ok Stella & Park, Jonghan & Ko, Joonho, 2023. "Public bike users’ annual travel distance: Findings from combined data of user survey and annual rental records," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    16. Suzanne Maas & Paraskevas Nikolaou & Maria Attard & Loukas Dimitriou, 2021. "Heat, Hills and the High Season: A Model-Based Comparative Analysis of Spatio-Temporal Factors Affecting Shared Bicycle Use in Three Southern European Islands," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    17. Dong, Xiaoyang & Zhang, Bin & Wang, Zhaohua, 2023. "Impact of land use on bike-sharing travel patterns: Evidence from large scale data analysis in China," Land Use Policy, Elsevier, vol. 133(C).
    18. Xing, Yingying & Wang, Ke & Lu, Jian John, 2020. "Exploring travel patterns and trip purposes of dockless bike-sharing by analyzing massive bike-sharing data in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 87(C).
    19. Smith, C. Scott & Schwieterman, Joseph P., 2021. "Using multivariate adaptive regression splining (MARS) to identify factors affecting the performance of dock-based bikesharing: The case of Chicago’s Divvy system," Research in Transportation Economics, Elsevier, vol. 89(C).
    20. Hyland, Michael & Hong, Zihan & Pinto, Helen Karla Ramalho de Farias & Chen, Ying, 2018. "Hybrid cluster-regression approach to model bikeshare station usage," Transportation Research Part A: Policy and Practice, Elsevier, vol. 115(C), pages 71-89.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:146:y:2021:i:c:p:72-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.