IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-01474166.html
   My bibliography  Save this paper

Modeling Bike Sharing System using Built Environment Factors

Author

Listed:
  • Tien Dung Tran

    (LET - Laboratoire d'économie des transports - UL2 - Université Lumière - Lyon 2 - ENTPE - École Nationale des Travaux Publics de l'État - CNRS - Centre National de la Recherche Scientifique)

  • Nicolas Ovtracht

    (LET - Laboratoire d'économie des transports - UL2 - Université Lumière - Lyon 2 - ENTPE - École Nationale des Travaux Publics de l'État - CNRS - Centre National de la Recherche Scientifique)

  • Bruno Faivre d'Arcier

    (LET - Laboratoire d'économie des transports - UL2 - Université Lumière - Lyon 2 - ENTPE - École Nationale des Travaux Publics de l'État - CNRS - Centre National de la Recherche Scientifique)

Abstract

This paper aims to present a modeling of bike sharing demand at station level in the city of Lyon. Robust linear regression models were used in order to predict the flows of each station. The data used in this project consists of over 6 million bike sharing trips recorded in 2011. The built environment variables used in the model are determined in a buffer zone of 300 meters around each bike sharing station. In order to estimate the bike sharing flow, we use the method of linear regression during the peak periods of a weekday. The results show that bike sharing is principally used for commuting purposes by long term subscribers while short term subscriber's trips purposes are more varied. The combination between bike sharing and train seems to be an important inter-modality. An interesting finding is that student is an important user of bike sharing. We found that there were different types of bikesharing usage which are influenced by socio-economic factors depending on the period within the day and type of subscribers. The present findings could be useful for others cities which want to adopt a bikesharing system and also for a better planning and operation of existing systems. Further, the solutions to encourage the use of bikesharing will be various depending on type of subscribers. The approach in this paper can be useful for estimating car-sharing demand.

Suggested Citation

  • Tien Dung Tran & Nicolas Ovtracht & Bruno Faivre d'Arcier, 2015. "Modeling Bike Sharing System using Built Environment Factors," Post-Print halshs-01474166, HAL.
  • Handle: RePEc:hal:journl:halshs-01474166
    DOI: 10.1016/j.procir.2015.02.156
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-01474166v1
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-01474166v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.procir.2015.02.156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:cdl:itsdav:qt79v822k5 is not listed on IDEAS
    2. Jesus Gonzalez-Feliu & Joëlle Morana, 2010. "Collaborative transportation sharing: from theory to practice via a case study from France," Post-Print halshs-00460923, HAL.
    3. Yves Crozet & Aurélie Mercier & Nicolas Ovtracht, 2012. "Accessibility: a key indicator to assess the past and future of urban mobility," Chapters, in: Karst T. Geurs & Kevin J. Krizek & Aura Reggiani (ed.), Accessibility Analysis and Transport Planning, chapter 15, pages 263-279, Edward Elgar Publishing.
    4. Karst T. Geurs & Kevin J. Krizek & Aura Reggiani (ed.), 2012. "Accessibility Analysis and Transport Planning," Books, Edward Elgar Publishing, number 14718.
    5. repec:cdl:itsrrp:qt6qg8q6ft is not listed on IDEAS
    6. Faghih-Imani, Ahmadreza & Eluru, Naveen & El-Geneidy, Ahmed M. & Rabbat, Michael & Haq, Usama, 2014. "How land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal," Journal of Transport Geography, Elsevier, vol. 41(C), pages 306-314.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yves Crozet, 2016. "Hyper-mobilité et politiques publiques - Changer d'époque ?," Post-Print halshs-01328814, HAL.
    2. Loder, Allister & Tanner, Reto & Axhausen, Kay W., 2017. "The impact of local work and residential balance on vehicle miles traveled: A new direct approach," Journal of Transport Geography, Elsevier, vol. 64(C), pages 139-149.
    3. Jesus Gonzalez-Feliu & Pierre Basck & Eleonora Morganti, 2013. "Urban logistics solutions and financing mechanisms: a scenario assessment analysis," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 54, pages 1-11.
    4. Mingyang Du & Lin Cheng, 2018. "Better Understanding the Characteristics and Influential Factors of Different Travel Patterns in Free-Floating Bike Sharing: Evidence from Nanjing, China," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    5. Médard de Chardon, Cyrille & Caruso, Geoffrey & Thomas, Isabelle, 2017. "Bicycle sharing system ‘success’ determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 202-214.
    6. Lowe, Kate & Mosby, Kim, 2016. "The conceptual mismatch: A qualitative analysis of transportation costs and stressors for low-income adults," Transport Policy, Elsevier, vol. 49(C), pages 1-8.
    7. Radzimski, Adam & Dzięcielski, Michał, 2021. "Exploring the relationship between bike-sharing and public transport in Poznań, Poland," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 189-202.
    8. Jesus Gonzalez-Feliu & Joëlle Morana, 2014. "Assessing urban logistics pooling sustainability via a hierarchic dashboard from a group decision perspective," Working Papers halshs-01053887, HAL.
    9. Zhou, Xiaolu & Wang, Mingshu & Li, Dongying, 2019. "Bike-sharing or taxi? Modeling the choices of travel mode in Chicago using machine learning," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    10. Ying Ni & Jiaqi Chen, 2020. "Exploring the Effects of the Built Environment on Two Transfer Modes for Metros: Dockless Bike Sharing and Taxis," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    11. Ding, Hongliang & Lu, Yuhuan & Sze, N.N. & Li, Haojie, 2022. "Effect of dockless bike-sharing scheme on the demand for London Cycle Hire at the disaggregate level using a deep learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 150-163.
    12. Karst T. Geurs & Kevin J. Krizek & Aura Reggiani, 2012. "Accessibility analysis and transport planning: an introduction," Chapters, in: Karst T. Geurs & Kevin J. Krizek & Aura Reggiani (ed.), Accessibility Analysis and Transport Planning, chapter 1, pages 1-12, Edward Elgar Publishing.
    13. Aurélie Mercier, 2016. "From spatial to social accessibility: How socio-economic factors can affect accessibility?," Working Papers halshs-01380412, HAL.
    14. Wang, Jueyu & Lindsey, Greg, 2019. "Do new bike share stations increase member use: A quasi-experimental study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 1-11.
    15. Kyoungok Kim, 2024. "Discovering spatiotemporal usage patterns of a bike-sharing system by type of pass: a case study from Seoul," Transportation, Springer, vol. 51(4), pages 1373-1407, August.
    16. Carlos Romero & Clara Zamorano & Emilio Ortega & Belén Martín, 2021. "Access to Secondary HSR Stations in the Urban Periphery: A Generalised Cost-Based Assessment," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
    17. Wafic El-Assi & Mohamed Salah Mahmoud & Khandker Nurul Habib, 2017. "Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto," Transportation, Springer, vol. 44(3), pages 589-613, May.
    18. Lin, Jen-Jia & Wei, Yi-Hsuan, 2018. "Assessing area-wide bikeability: A grey analytic network process," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 381-396.
    19. Chiou, Yu-Chiun & Wu, Kuo-Chi, 2024. "Bikesharing: The first- and last-mile service of public transportation? Evidence from an origin–destination perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 187(C).
    20. Caulfield, Brian & O'Mahony, Margaret & Brazil, William & Weldon, Peter, 2017. "Examining usage patterns of a bike-sharing scheme in a medium sized city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 152-161.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-01474166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.