IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt8042k3d7.html
   My bibliography  Save this paper

Mobility and the Sharing Economy: Potential to Overcome First- and Last-Mile Public Transit Connections

Author

Listed:
  • Shaheen, Susan PhD
  • Chan, Nelson

Abstract

Shared mobility—the shared use of a motor vehicle, bicycle, or other mode—enables travelers to gain short-term access to transportation modes on an as-needed basis. The term “shared mobility” includes the modes of carsharing, personal vehicle sharing (peer-to-peer carsharing and fractional ownership), bikesharing, scooter sharing, traditional ridesharing, transportation network companies (or ridesourcing), and e-Hail (taxis). It can also include flexible transit services, including microtransit, which supplement fixed-route bus and rail services. Shared mobility has proliferated in global cities not only as an innovative transportation mode enhancing urban mobility but also as a potential solution for addressing first- and last-mile connectivity with public transit. It can extend the catchment area of public transportation, potentially playing a pivotal role in bridging gaps in the existing transportation network and encouraging multimodality for first- and last-mile trips rather than driving alone. While public transit is often constrained by fixed routes, driver availability, and vehicle scheduling, shared mobility’s “ondemand” access provides the flexibility that travelers need to access or egress from a bus or rail “trunk line.” Moreover, shared mobility provides an alternative to costly feeder bus services and land-intensive parking infrastructure. This paper discusses the history of shared mobility within the context of the urban transportation landscape, first in Europe and Asia, and more recently in the Americas, with a specific focus on first- and last-mile connections to public transit. The authors discuss the known impacts of shared mobility modes—carsharing, bikesharing, and ridesharing—on reducing vehicle miles/kilometers traveled (VMT/VKT), greenhouse gas (GHG) emissions, and modal splits with public transit. The future of shared mobility in the urban transportation landscape is discussed, as mobile technology and public policy continue to evolve to integrate shared mobility with public transit and future automated vehicles.

Suggested Citation

  • Shaheen, Susan PhD & Chan, Nelson, 2016. "Mobility and the Sharing Economy: Potential to Overcome First- and Last-Mile Public Transit Connections," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8042k3d7, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt8042k3d7
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/8042k3d7.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:cdl:itsrrp:qt23r1h80t is not listed on IDEAS
    2. Jeffery B. Greenblatt & Samveg Saxena, 2015. "Autonomous taxis could greatly reduce greenhouse-gas emissions of US light-duty vehicles," Nature Climate Change, Nature, vol. 5(9), pages 860-863, September.
    3. Susan Shaheen & Nelson Chan & Helen Micheaux, 2015. "One-way carsharing’s evolution and operator perspectives from the Americas," Transportation, Springer, vol. 42(3), pages 519-536, May.
    4. Nourinejad, Mehdi & Zhu, Sirui & Bahrami, Sina & Roorda, Matthew J., 2015. "Vehicle relocation and staff rebalancing in one-way carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 98-113.
    5. repec:cdl:itsrrp:qt9w53q5xq is not listed on IDEAS
    6. Shaheen, Susan & Wright, John & Dick, David & Novick, Linda, 2000. "Carlink - A Smart Carsharing System Field Test Report," Institute of Transportation Studies, Working Paper Series qt20f9s84f, Institute of Transportation Studies, UC Davis.
    7. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    8. repec:cdl:itsrrp:qt3q69g29p is not listed on IDEAS
    9. repec:cdl:itsrrp:qt83s1z8j4 is not listed on IDEAS
    10. Matthew Clark & Kate Gifford & Jillian Anable & Scott Le Vine, 2015. "Business-to-business carsharing: evidence from Britain of factors associated with employer-based carsharing membership and its impacts," Transportation, Springer, vol. 42(3), pages 471-495, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaheen, Susan PhD & Bansal, Apaar & Chan, Nelson & Cohen, Adam, 2017. "Mobility and the Sharing Economy: Industry Developments and Early Understanding of Impacts," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt96j5r729, Institute of Transportation Studies, UC Berkeley.
    2. Boyacı, Burak & Zografos, Konstantinos G., 2019. "Investigating the effect of temporal and spatial flexibility on the performance of one-way electric carsharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 244-272.
    3. Qian, Lixian & Yin, Juelin & Huang, Youlin & Liang, Ya, 2023. "The role of values and ethics in influencing consumers’ intention to use autonomous vehicle hailing services," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    4. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    5. Jia Guo & Yusak Susilo & Constantinos Antoniou & Anna Pernestål Brenden, 2020. "Influence of Individual Perceptions on the Decision to Adopt Automated Bus Services," Sustainability, MDPI, vol. 12(16), pages 1-13, August.
    6. Johannes Morfeldt & Daniel J. A. Johansson, 2022. "Impacts of shared mobility on vehicle lifetimes and on the carbon footprint of electric vehicles," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Circella, Giovanni & Alemi, Farzad & Tiedeman, Kate & Handy, Susan & Mokhtarian, Patricia, 2018. "The Adoption of Shared Mobility in California and Its Relationship with Other Components of Travel Behavior," Institute of Transportation Studies, Working Paper Series qt1kq5d07p, Institute of Transportation Studies, UC Davis.
    8. Moneim Massar & Imran Reza & Syed Masiur Rahman & Sheikh Muhammad Habib Abdullah & Arshad Jamal & Fahad Saleh Al-Ismail, 2021. "Impacts of Autonomous Vehicles on Greenhouse Gas Emissions—Positive or Negative?," IJERPH, MDPI, vol. 18(11), pages 1-23, May.
    9. Illgen, Stefan & Höck, Michael, 2019. "Literature review of the vehicle relocation problem in one-way car sharing networks," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 193-204.
    10. Shaheen, Susan PhD & Cohen, Adam & Farrar, Emily, 2019. "Carsharing's Impact and Future," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2f5896tp, Institute of Transportation Studies, UC Berkeley.
    11. Sergey Naumov & David R. Keith & Charles H. Fine, 2020. "Unintended Consequences of Automated Vehicles and Pooling for Urban Transportation Systems," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1354-1371, May.
    12. Hardaway, Kendrick & Teran, Oscar & Cai, Hua, 2025. "Silent emissions: The cyber-infrastructure environmental impacts of autonomous vehicles," Applied Energy, Elsevier, vol. 392(C).
    13. Roberto Battistini & Luca Mantecchini & Maria Nadia Postorino, 2020. "Users’ Acceptance of Connected and Automated Shuttles for Tourism Purposes: A Survey Study," Sustainability, MDPI, vol. 12(23), pages 1-17, December.
    14. Xiaowei Chen & Hongyu Zheng & Ze Wang & Xiqun Chen, 2021. "Exploring impacts of on-demand ridesplitting on mobility via real-world ridesourcing data and questionnaires," Transportation, Springer, vol. 48(4), pages 1541-1561, August.
    15. Nuri C. Onat & Jafar Mandouri & Murat Kucukvar & Burak Sen & Saddam A. Abbasi & Wael Alhajyaseen & Adeeb A. Kutty & Rateb Jabbar & Marcello Contestabile & Abdel Magid Hamouda, 2023. "Rebound effects undermine carbon footprint reduction potential of autonomous electric vehicles," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Hohenberger, Christoph & Spörrle, Matthias & Welpe, Isabell M., 2016. "How and why do men and women differ in their willingness to use automated cars? The influence of emotions across different age groups," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 374-385.
    17. Max Luke & Priyanshi Somani & Turner Cotterman & Dhruv Suri & Stephen J. Lee, 2020. "No COVID-19 Climate Silver Lining in the US Power Sector," Papers 2008.06660, arXiv.org, revised May 2021.
    18. Bin-Nun, Amitai Y. & Binamira, Isabel, 2020. "A framework for the impact of highly automated vehicles with limited operational design domains," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 174-188.
    19. Anna Eliza Wolnowska & Lech Kasyk, 2022. "Transport Preferences of City Residents in the Context of Urban Mobility and Sustainable Development," Energies, MDPI, vol. 15(15), pages 1-32, August.
    20. Long T. Truong & Chris Gruyter & Graham Currie & Alexa Delbosc, 2017. "Estimating the trip generation impacts of autonomous vehicles on car travel in Victoria, Australia," Transportation, Springer, vol. 44(6), pages 1279-1292, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt8042k3d7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.