IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v164y2022icp65-86.html
   My bibliography  Save this article

A closed-form multiple discrete-count extreme value (MDCNTEV) model

Author

Listed:
  • Bhat, Chandra R.

Abstract

In this paper, we propose a new two-stage budgeting-based utility-theoretic econometric multiple discrete-count model based on the linking of a fractional split MDCEV model component with a total count model. Through the strategic specification of error distributions in the model, we derive a multiple discrete-count extreme value (MDCNTEV) model that has a closed-form probability expression and that is estimable using straightforward maximum likelihood estimation. An application of the proposed model is demonstrated in the context of individuals’ multivariate count of recreational episodes to each of multiple possible tourism destination locations. The results highlight the promise of the proposed model for a variety of multivariate count consumer choice settings. The model can also serve as a base model over which random heterogeneity may be superimposed to specify more advanced models.

Suggested Citation

  • Bhat, Chandra R., 2022. "A closed-form multiple discrete-count extreme value (MDCNTEV) model," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 65-86.
  • Handle: RePEc:eee:transb:v:164:y:2022:i:c:p:65-86
    DOI: 10.1016/j.trb.2022.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261522001308
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2022.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shin, Jungwoo & Hwang, Won-Sik & Choi, Hyundo, 2019. "Can hydrogen fuel vehicles be a sustainable alternative on vehicle market?: Comparison of electric and hydrogen fuel cell vehicles," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 239-248.
    2. Kuriyama, Koichi & Shoji, Yasushi & Tsuge, Takahiro, 2020. "The value of leisure time of weekends and long holidays: The multiple discrete–continuous extreme value (MDCEV) choice model with triple constraints," Journal of choice modelling, Elsevier, vol. 37(C).
    3. Bhat, Chandra R., 2022. "A new closed-form two-stage budgeting-based multiple discrete-continuous model," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 162-192.
    4. Caleb Van Nostrand & Vijayaraghavan Sivaraman & Abdul Pinjari, 2013. "Analysis of long-distance vacation travel demand in the United States: a multiple discrete–continuous choice framework," Transportation, Springer, vol. 40(1), pages 151-171, January.
    5. Terza, Joseph V & Wilson, Paul W, 1990. "Analyzing Frequencies of Several Types of Events: A Mixed Multinomial-Poisson Approach," The Review of Economics and Statistics, MIT Press, vol. 72(1), pages 108-115, February.
    6. Edward R. Morey & Robert D. Rowe & Michael Watson, 1993. "A Repeated Nested-Logit Model of Atlantic Salmon Fishing," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(3), pages 578-592.
    7. Chandra R. Bhat & Rajesh Paleti & Marisol Castro, 2015. "A New Utility‐Consistent Econometric Approach to Multivariate Count Data Modeling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(5), pages 806-825, August.
    8. Hausman, Jerry A. & Leonard, Gregory K. & McFadden, Daniel, 1995. "A utility-consistent, combined discrete choice and count data model Assessing recreational use losses due to natural resource damage," Journal of Public Economics, Elsevier, vol. 56(1), pages 1-30, January.
    9. Saxena, Shobhit & Pinjari, Abdul Rawoof & Bhat, Chandra R., 2022. "Multiple discrete-continuous choice models with additively separable utility functions and linear utility on outside good: Model properties and characterization of demand functions," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 526-557.
    10. Bhat, Chandra R. & Astroza, Sebastian & Bhat, Aarti C. & Nagel, Kai, 2016. "Incorporating a multiple discrete-continuous outcome in the generalized heterogeneous data model: Application to residential self-selection effects analysis in an activity time-use behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 52-76.
    11. Gill Lawson & David Dean & Yuqing He & Xinghua Huang, 2021. "Motivations and Satisfaction of New Zealand Domestic Tourists to Inform Landscape Design in a Nature-Based Setting," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    12. George R. Parsons & Michael S. Needelman, 1992. "Site Aggregation in a Random Utility Model of Recreation," Land Economics, University of Wisconsin Press, vol. 68(4), pages 418-433.
    13. José M. R. Murteira & Joaquim J. S. Ramalho, 2016. "Regression Analysis of Multivariate Fractional Data," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 515-552, April.
    14. Bhat, Chandra R. & Mondal, Aupal & Pinjari, Abdul Rawoof & Saxena, Shobhit & Pendyala, Ram M., 2022. "A multiple discrete continuous extreme value choice (MDCEV) model with a linear utility profile for the outside good recognizing positive consumption constraints," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 28-49.
    15. Mouter, Niek & Koster, Paul & Dekker, Thijs, 2021. "Contrasting the recommendations of participatory value evaluation and cost-benefit analysis in the context of urban mobility investments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 54-73.
    16. Fally, Thibault, 2022. "Generalized separability and integrability: Consumer demand with a price aggregator," Journal of Economic Theory, Elsevier, vol. 203(C).
    17. Jan Rouwendal & Jaap Boter, 2009. "Assessing the value of museums with a combined discrete choice/count data model," Applied Economics, Taylor & Francis Journals, vol. 41(11), pages 1417-1436.
    18. Mannering, Fred L. & Hamed, Mohammad M., 1990. "Occurence, frequency, and duration of commuters' work-to-home departure delay," Transportation Research Part B: Methodological, Elsevier, vol. 24(2), pages 99-109, April.
    19. Astroza, Sebastian & Bhat, Aarti C., 2016. "On allowing a general form for unobserved heterogeneity in the multiple discrete–continuous probit model: Formulation and application to tourism travelAuthor-Name: Bhat, Chandra R," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 223-249.
    20. Bhat, Chandra R., 2008. "The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 274-303, March.
    21. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    22. Peyhardi, Jean & Fernique, Pierre & Durand, Jean-Baptiste, 2021. "Splitting models for multivariate count data," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    23. Fally, Thibault, 2022. "Generalized Separability and Integrability: Consumer Demand with a Price Aggregator," CEPR Discussion Papers 17249, C.E.P.R. Discussion Papers.
    24. Igal Hendel, 1999. "Estimating Multiple-Discrete Choice Models: An Application to Computerization Returns," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 66(2), pages 423-446.
    25. Aleksandra Wiśniewska & Wiktor Budziński & Mikołaj Czajkowski, 2020. "An economic valuation of access to cultural institutions: museums, theatres, and cinemas," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 44(4), pages 563-587, December.
    26. Sanghak Lee & Greg M. Allenby, 2014. "Modeling Indivisible Demand," Marketing Science, INFORMS, vol. 33(3), pages 364-381, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hung Tran & Tien Mai, 2023. "Network-based Representations and Dynamic Discrete Choice Models for Multiple Discrete Choice Analysis," Papers 2306.04606, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhat, Chandra R., 2022. "A new closed-form two-stage budgeting-based multiple discrete-continuous model," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 162-192.
    2. Bhat, Chandra R. & Mondal, Aupal & Asmussen, Katherine E. & Bhat, Aarti C., 2020. "A multiple discrete extreme value choice model with grouped consumption data and unobserved budgets," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 196-222.
    3. Jara-Díaz, Sergio & Rosales-Salas, Jorge, 2017. "Beyond transport time: A review of time use modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 209-230.
    4. Bhat, Chandra R., 2018. "A new flexible multiple discrete–continuous extreme value (MDCEV) choice model," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 261-279.
    5. Bhat, Chandra R. & Mondal, Aupal & Pinjari, Abdul Rawoof & Saxena, Shobhit & Pendyala, Ram M., 2022. "A multiple discrete continuous extreme value choice (MDCEV) model with a linear utility profile for the outside good recognizing positive consumption constraints," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 28-49.
    6. Richard Batley & Thijs Dekker, 2019. "The Intuition Behind Income Effects of Price Changes in Discrete Choice Models, and a Simple Method for Measuring the Compensating Variation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(1), pages 337-366, September.
    7. Chen, Roger B., 2018. "Models of count with endogenous choices," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 862-875.
    8. Hung Tran & Tien Mai, 2023. "Network-based Representations and Dynamic Discrete Choice Models for Multiple Discrete Choice Analysis," Papers 2306.04606, arXiv.org.
    9. Mondal, Aupal & Bhat, Chandra R., 2021. "A new closed form multiple discrete-continuous extreme value (MDCEV) choice model with multiple linear constraints," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 42-66.
    10. Enam, Annesha & Konduri, Karthik C. & Pinjari, Abdul R. & Eluru, Naveen, 2018. "An integrated choice and latent variable model for multiple discrete continuous choice kernels: Application exploring the association between day level moods and discretionary activity engagement choi," Journal of choice modelling, Elsevier, vol. 26(C), pages 80-100.
    11. Ye, Xin & Garikapati, Venu M. & You, Daehyun & Pendyala, Ram M., 2017. "A practical method to test the validity of the standard Gumbel distribution in logit-based multinomial choice models of travel behavior," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 173-192.
    12. Kidokoro, Yukihiro, 2016. "A micro foundation for discrete choice models with multiple categories of goods," Journal of choice modelling, Elsevier, vol. 19(C), pages 54-72.
    13. Pinjari, Abdul Rawoof & Bhat, Chandra, 2021. "Computationally efficient forecasting procedures for Kuhn-Tucker consumer demand model systems: Application to residential energy consumption analysis," Journal of choice modelling, Elsevier, vol. 39(C).
    14. Aliza Fleischer & Yacov Tsur, 2003. "Measuring the Recreational Value of Open Space," Journal of Agricultural Economics, Wiley Blackwell, vol. 54(2), pages 269-283, July.
    15. Xie, Lusi & Adamowicz, Wiktor & Lloyd-Smith, Patrick, 2023. "Spatial and temporal responses to incentives: An application to wildlife disease management," Journal of Environmental Economics and Management, Elsevier, vol. 117(C).
    16. Chandra Bhat & Abdul Pinjari, 2014. "Multiple discrete-continuous choice models: a reflective analysis and a prospective view," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 19, pages 427-454, Edward Elgar Publishing.
    17. Leung, Kevin Y.K. & Astroza, Sebastian & Loo, Becky P.Y. & Bhat, Chandra R., 2019. "An environment-people interactions framework for analysing children's extra-curricular activities and active transport," Journal of Transport Geography, Elsevier, vol. 74(C), pages 341-358.
    18. Gosens, Tom & Rouwendal, Jan, 2018. "Nature-based outdoor recreation trips: Duration, travel mode and location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 513-530.
    19. Saxena, Shobhit & Pinjari, Abdul Rawoof & Roy, Ananya & Paleti, Rajesh, 2021. "Multiple discrete-continuous choice models with bounds on consumptions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 237-265.
    20. Tapia, Rodrigo J. & de Jong, Gerard & Larranaga, Ana M. & Bettella Cybis, Helena B., 2020. "Application of MDCEV to infrastructure planning in regional freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 255-271.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:164:y:2022:i:c:p:65-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.