IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v151y2020ics004016251930006x.html
   My bibliography  Save this article

Quantifying technological change as a combinatorial process

Author

Listed:
  • Parraguez, Pedro
  • Škec, Stanko
  • e Carmo, Duarte Oliveira
  • Maier, Anja

Abstract

Technological change plays a critical role in industrial- and societal development. As a consequence, modelling, measuring and monitoring the rate and direction of technological change has been extensively studied. However, there is to-date no scalable, cross-domain, and data source agnostic quantitative indicator for technological change that considers a combinatorial process of invention and technology development. This paper develops and empirically tests a network-based method that takes a combinatorial view of technological development as underlying rationale and provides a quantitative indicator for technological change. Unlike prior research, the proposed method allows for the simultaneous inclusion of multiple and diverse types of data sources, i.e. publications, patents, and projects and it uses text-mining analyses based on co-occurrences of terms over time. The novel method proposed here goes beyond reliance on domain experts building custom sets of taxonomies, is applicable across different technological domains, and permits a temporal analysis of changes across years, industries, and countries. This is illustrated using a large database of worldwide bioenergy research and development (R&D) records. Findings include the detection of biofuel generations in the data before they were first mentioned as such in literature. Implications for research, industry and policy are also discussed.

Suggested Citation

  • Parraguez, Pedro & Škec, Stanko & e Carmo, Duarte Oliveira & Maier, Anja, 2020. "Quantifying technological change as a combinatorial process," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:tefoso:v:151:y:2020:i:c:s004016251930006x
    DOI: 10.1016/j.techfore.2019.119803
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S004016251930006X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2019.119803?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adegbesan, Tunji & Ricart, Joan E., 2007. "What do we really know about when technological innovation improves performance (and when it does not)?," IESE Research Papers D/668, IESE Business School.
    2. Janghyeok Yoon & Sungchul Choi & Kwangsoo Kim, 2011. "Invention property-function network analysis of patents: a case of silicon-based thin film solar cells," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(3), pages 687-703, March.
    3. Guan, Jiancheng & Liu, Na, 2016. "Exploitative and exploratory innovations in knowledge network and collaboration network: A patent analysis in the technological field of nano-energy," Research Policy, Elsevier, vol. 45(1), pages 97-112.
    4. Lee Fleming & David M. Waguespack, 2007. "Brokerage, Boundary Spanning, and Leadership in Open Innovation Communities," Organization Science, INFORMS, vol. 18(2), pages 165-180, April.
    5. Sternitzke, Christian & Bartkowski, Adam & Schramm, Reinhard, 2008. "Visualizing patent statistics by means of social network analysis tools," World Patent Information, Elsevier, vol. 30(2), pages 115-131, June.
    6. Joung, Junegak & Kim, Kwangsoo, 2017. "Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 281-292.
    7. Pao-Long Chang & Chao-Chan Wu & Hoang-Jyh Leu, 2010. "Using patent analyses to monitor the technological trends in an emerging field of technology: a case of carbon nanotube field emission display," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(1), pages 5-19, January.
    8. Dale W. Jorgenson, 2001. "Information Technology and the U.S. Economy," Higher School of Economics Economic Journal Экономический журнал Высшей школы экономики, CyberLeninka;Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики», vol. 5(1), pages 3-34.
    9. Deborah Strumsky & José Lobo & Sander van der Leeuw, 2012. "Using patent technology codes to study technological change," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 21(3), pages 267-286, April.
    10. Russell J. Funk & Jason Owen-Smith, 2017. "A Dynamic Network Measure of Technological Change," Management Science, INFORMS, vol. 63(3), pages 791-817, March.
    11. Fleming, Lee & Sorenson, Olav, 2001. "Technology as a complex adaptive system: evidence from patent data," Research Policy, Elsevier, vol. 30(7), pages 1019-1039, August.
    12. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    13. Sam Arts & Bruno Cassiman & Juan Carlos Gomez, 2018. "Text matching to measure patent similarity," Strategic Management Journal, Wiley Blackwell, vol. 39(1), pages 62-84, January.
    14. Stephen Johnson, 1967. "Hierarchical clustering schemes," Psychometrika, Springer;The Psychometric Society, vol. 32(3), pages 241-254, September.
    15. Weishu Liu & Mengdi Gu & Guangyuan Hu & Chao Li & Huchang Liao & Li Tang & Philip Shapira, 2014. "Profile of developments in biomass-based bioenergy research: a 20-year perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(2), pages 507-521, May.
    16. Ricardo Hausmann & César Hidalgo, 2011. "The network structure of economic output," Journal of Economic Growth, Springer, vol. 16(4), pages 309-342, December.
    17. P. Robert & Y. Escoufier, 1976. "A Unifying Tool for Linear Multivariate Statistical Methods: The RV‐Coefficient," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 25(3), pages 257-265, November.
    18. Ad van den Oord & Arjen van Witteloostuijn, 2018. "A multi-level model of emerging technology: An empirical study of the evolution of biotechnology from 1976 to 2003," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-27, May.
    19. Brent Goldfarb, 2005. "Diffusion of general-purpose technologies: understanding patterns in the electrification of US Manufacturing 1880--1930," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 14(5), pages 745-773, October.
    20. Robert K. Abercrombie & Akaninyene W. Udoeyop & Bob G. Schlicher, 2012. "A study of scientometric methods to identify emerging technologies via modeling of milestones," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 327-342, May.
    21. Sang Ho Kook & Ki Hong Kim & Chulung Lee, 2017. "Dynamic Technological Diversification and Its Impact on Firms’ Performance: An Empirical Analysis of Korean IT Firms," Sustainability, MDPI, vol. 9(7), pages 1-16, July.
    22. Venugopalan, Subhashini & Rai, Varun, 2015. "Topic based classification and pattern identification in patents," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 236-250.
    23. Phillips, Fred & Linstone, Hal, 2016. "Key ideas from a 25-year collaboration at technological forecasting & social change," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 158-166.
    24. Engelsman, E. C. & van Raan, A. F. J., 1994. "A patent-based cartography of technology," Research Policy, Elsevier, vol. 23(1), pages 1-26, January.
    25. Christopher L. Benson & Christopher L. Magee, 2013. "Erratum to: A hybrid keyword and patent class methodology for selecting relevant sets of patents for a technological field," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 83-83, July.
    26. Péter Érdi & Kinga Makovi & Zoltán Somogyvári & Katherine Strandburg & Jan Tobochnik & Péter Volf & László Zalányi, 2013. "Prediction of emerging technologies based on analysis of the US patent citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 225-242, April.
    27. Emmanuel Duguet & Megan MacGarvie, 2005. "How well do patent citations measure flows of technology? Evidence from French innovation surveys," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 14(5), pages 375-393.
    28. Moro, Alberto & Boelman, Elisa & Joanny, Geraldine & Garcia, Juan Lopez, 2018. "A bibliometric-based technique to identify emerging photovoltaic technologies in a comparative assessment with expert review," Renewable Energy, Elsevier, vol. 123(C), pages 407-416.
    29. Sam Arts & Reinhilde Veugelers, 2015. "Technology familiarity, recombinant novelty, and breakthrough invention," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 24(6), pages 1215-1246.
    30. Thanh-Dong Pham & Byeong-Kyu Lee & Chi Hyeon Lee & Minh Viet Nguyen, 2015. "Emission Control Technology," Chapters, in: Farhad Nejadkoorki (ed.), Current Air Quality Issues, IntechOpen.
    31. Choi, Jinho & Hwang, Yong-Sik, 2014. "Patent keyword network analysis for improving technology development efficiency," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 170-182.
    32. Lee, Won Sang & Han, Eun Jin & Sohn, So Young, 2015. "Predicting the pattern of technology convergence using big-data technology on large-scale triadic patents," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 317-329.
    33. repec:bla:jamest:v:45:y:1994:i:1:p:12-19 is not listed on IDEAS
    34. Aamena Alshamsi & Flávio L. Pinheiro & Cesar A. Hidalgo, 2018. "Optimal diversification strategies in the networks of related products and of related research areas," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    35. Munan Li, 2015. "A novel three-dimension perspective to explore technology evolution," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1679-1697, December.
    36. Christopher L. Benson & Christopher L. Magee, 2013. "A hybrid keyword and patent class methodology for selecting relevant sets of patents for a technological field," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 69-82, July.
    37. Choe, Hochull & Lee, Duk Hee & Seo, Il Won & Kim, Hee Dae, 2013. "Patent citation network analysis for the domain of organic photovoltaic cells: Country, institution, and technology field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 492-505.
    38. Josse, J. & Pagès, J. & Husson, F., 2008. "Testing the significance of the RV coefficient," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 82-91, September.
    39. Ricard Solé & Daniel R Amor & Sergi Valverde, 2016. "On Singularities and Black Holes in Combination-Driven Models of Technological Innovation Networks," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bouncken, Ricarda B. & Qiu, Yixin & García, F. Javier Sendra, 2021. "Flexible pattern matching approach: Suggestions for augmenting theory evolvement," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    2. Meng, Jia-Hui & Wang, Jian, 2023. "The policy trajectory of dual-use technology integration governance in China: A sequential analysis of policy evolution," Technology in Society, Elsevier, vol. 72(C).
    3. Luqman, Adeel & Wang, Liangyu & Katiyar, Gagan & Agarwal, Reeti & Mohapatra, Amiya Kumar, 2024. "Unpacking associations between positive-negative valence and ambidexterity of big data. Implications for firm performance," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    4. Block, Carolin & Wustmans, Michael & Laibach, Natalie & Bröring, Stefanie, 2021. "Semantic bridging of patents and scientific publications – The case of an emerging sustainability-oriented technology," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    5. Marcon, Arthur & Ribeiro, José Luis Duarte & Olteanu, Yasmin & Fichter, Klaus, 2024. "How the interplay between innovation ecosystems and market contingency factors impacts startup innovation," Technology in Society, Elsevier, vol. 76(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Wolf & Tobias Buchmann, 2021. "Analyzing development patterns in research networks and technology," Review of Evolutionary Political Economy, Springer, vol. 2(1), pages 55-81, April.
    2. Higham, Kyle & Contisciani, Martina & De Bacco, Caterina, 2022. "Multilayer patent citation networks: A comprehensive analytical framework for studying explicit technological relationships," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    3. Bruns, Stephan B. & Kalthaus, Martin, 2020. "Flexibility in the selection of patent counts: Implications for p-hacking and evidence-based policymaking," Research Policy, Elsevier, vol. 49(1).
    4. Changbae Mun & Sejun Yoon & Hyunseok Park, 2019. "Structural decomposition of technological domain using patent co-classification and classification hierarchy," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 633-652, November.
    5. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    6. Singh, Anuraag & Triulzi, Giorgio & Magee, Christopher L., 2021. "Technological improvement rate predictions for all technologies: Use of patent data and an extended domain description," Research Policy, Elsevier, vol. 50(9).
    7. Ying Huang & Donghua Zhu & Yue Qian & Yi Zhang & Alan L. Porter & Yuqin Liu & Ying Guo, 2017. "A hybrid method to trace technology evolution pathways: a case study of 3D printing," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 185-204, April.
    8. Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
    9. Maryann Feldman & Dieter Kogler & David Rigby, 2013. "rKnowledge: The Spatial Diffusion of rDNA Methods," Papers in Evolutionary Economic Geography (PEEG) 1311, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Aug 2013.
    10. Qu, Guannan & Chen, Jin & Zhang, Ruhao & Wang, Luyao & Yang, Yayu, 2023. "Technological search strategy and breakthrough innovation: An integrated approach based on main-path analysis," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    11. Richarz, Jan & Wegewitz, Stephan & Henn, Sarah & Müller, Dirk, 2023. "Graph-based research field analysis by the use of natural language processing: An overview of German energy research," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    12. Emanuele Pugliese & Lorenzo Napolitano & Andrea Zaccaria & Luciano Pietronero, 2019. "Coherent diversification in corporate technological portfolios," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-22, October.
    13. Jason Jihoon Ree & Cheolhyun Jeong & Hyunseok Park & Kwangsoo Kim, 2019. "Context–Problem Network and Quantitative Method of Patent Analysis: A Case Study of Wireless Energy Transmission Technology," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    14. Milan Miric & Hakan Ozalp & Erdem Dogukan Yilmaz, 2023. "Trade‐offs to using standardized tools: Innovation enablers or creativity constraints?," Strategic Management Journal, Wiley Blackwell, vol. 44(4), pages 909-942, April.
    15. Ansgar Moeller & Martin G. Moehrle, 2015. "Completing keyword patent search with semantic patent search: introducing a semiautomatic iterative method for patent near search based on semantic similarities," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 77-96, January.
    16. Michael Rennings & Philipp Baaden & Carolin Block & Marcus John & Stefanie Bröring, 2024. "Assessing emerging sustainability-oriented technologies: the case of precision agriculture," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 2969-2998, June.
    17. Pinheiro, Flávio L. & Hartmann, Dominik & Boschma, Ron & Hidalgo, César A., 2022. "The time and frequency of unrelated diversification," Research Policy, Elsevier, vol. 51(8).
    18. Shubbak, Mahmood H., 2019. "Advances in solar photovoltaics: Technology review and patent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    19. Pantano, Eleonora & Priporas, Constantinos-Vasilios & Stylos, Nikolaos, 2018. "Knowledge Push Curve (KPC) in retailing: Evidence from patented innovations analysis affecting retailers' competitiveness," Journal of Retailing and Consumer Services, Elsevier, vol. 44(C), pages 150-160.
    20. Wooseok Jang & Yongtae Park & Hyeonju Seol, 2021. "Identifying emerging technologies using expert opinions on the future: A topic modeling and fuzzy clustering approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6505-6532, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:151:y:2020:i:c:s004016251930006x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.