IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Predictability of the simple technical trading rules: An out-of-sample test

  • Fang, Jiali
  • Jacobsen, Ben
  • Qin, Yafeng
Registered author(s):

    In a true out-of-sample test based on fresh data we find no evidence that several well-known technical trading strategies predict stock markets over the period of 1987 to 2011. Our test safeguards against sample selection bias, data mining, hindsight bias, and other usual biases that may affect results in our field. We use the exact same technical trading rules that Brock, Lakonishok, and LeBaron (1992) showed to work best in their historical sample. Further analysis shows that this poor out-of-sample performance most likely is not due to the market becoming more efficient – instantaneously or gradually over time – but probably a result of bias.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S1058330013000396
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Review of Financial Economics.

    Volume (Year): 23 (2014)
    Issue (Month): 1 ()
    Pages: 30-45

    as
    in new window

    Handle: RePEc:eee:revfin:v:23:y:2014:i:1:p:30-45
    DOI: 10.1016/j.rfe.2013.05.004
    Contact details of provider: Web page: http://www.elsevier.com/locate/inca/620170

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Gencay Ramazan & Stengos Thanasis, 1997. "Technical Trading Rules and the Size of the Risk Premium in Security Returns," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(2), pages 1-14, July.
    2. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    3. Peter Reinhard HANSEN & Allan TIMMERMANN, 2012. "Choice of Sample Split in Out-of-Sample Forecast Evaluation," Economics Working Papers ECO2012/10, European University Institute.
    4. Davis, James L, 1994. " The Cross-Section of Realized Stock Returns: The Pre-COMPUSTAT Evidence," Journal of Finance, American Finance Association, vol. 49(5), pages 1579-93, December.
    5. Jensen, Michael C & Bennington, George A, 1970. "Random Walks and Technical Theories: Some Additional Evidence," Journal of Finance, American Finance Association, vol. 25(2), pages 469-82, May.
    6. Park, Cheol-Ho & Irwin, Scott H., 2004. "The Profitability of Technical Analysis: A Review," AgMAS Project Research Reports 37487, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics.
    7. Josef Lakonishok, Seymour Smidt, 1988. "Are Seasonal Anomalies Real? A Ninety-Year Perspective," Review of Financial Studies, Society for Financial Studies, vol. 1(4), pages 403-425.
    8. Ramazan GenÁay & Giuseppe Ballocchi & Michel Dacorogna & Richard Olsen & Olivier Pictet, 2002. "Real-Time Trading Models and the Statistical Properties of Foreign Exchange Rates," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 43(2), pages 463-492, May.
    9. Foster, F Douglas & Smith, Tom & Whaley, Robert E, 1997. " Assessing Goodness-of-Fit of Asset Pricing Models: The Distribution of the Maximal R-Squared," Journal of Finance, American Finance Association, vol. 52(2), pages 591-607, June.
    10. David J. Hand & Heikki Mannila & Padhraic Smyth, 2001. "Principles of Data Mining," MIT Press Books, The MIT Press, edition 1, volume 1, number 026208290x, March.
    11. Andrew W. Lo & A. Craig MacKinlay, 1989. "Data-Snooping Biases in Tests of Financial Asset Pricing Models," NBER Working Papers 3001, National Bureau of Economic Research, Inc.
    12. Denton, Frank T, 1985. "Data Mining as an Industry," The Review of Economics and Statistics, MIT Press, vol. 67(1), pages 124-27, February.
    13. Gencay, Ramazan & Dacorogna, Michel & Olsen, Richard & Pictet, Olivier, 2003. "Foreign exchange trading models and market behavior," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 909-935, April.
    14. Michael Cooper & Huseyin Gulen, 2006. "Is Time-Series-Based Predictability Evident in Real Time?," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1263-1292, May.
    15. Inoue, Atsushi & Kilian, Lutz, 2002. "In-Sample or Out-of-Sample Tests of Predictability: Which One Should We Use?," CEPR Discussion Papers 3671, C.E.P.R. Discussion Papers.
    16. Henriksson, Roy D & Merton, Robert C, 1981. "On Market Timing and Investment Performance. II. Statistical Procedures for Evaluating Forecasting Skills," The Journal of Business, University of Chicago Press, vol. 54(4), pages 513-33, October.
    17. Fama, Eugene F, 1991. " Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-617, December.
    18. Elliott, Graham & Timmermann, Allan G, 2007. "Economic Forecasting," CEPR Discussion Papers 6158, C.E.P.R. Discussion Papers.
    19. Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
    20. Gencay, Ramazan, 1998. "The predictability of security returns with simple technical trading rules," Journal of Empirical Finance, Elsevier, vol. 5(4), pages 347-359, October.
    21. Christopher J. Neely & Paul A. Weller, 2011. "Technical analysis in the foreign exchange market," Working Papers 2011-001, Federal Reserve Bank of St. Louis.
    22. Panagiotis Andrikopoulos & Arief Daynes & David Latimer & Paraskevas Pagas, 2008. "Size effect, methodological issues and 'risk-to-default': evidence from the UK stock market," The European Journal of Finance, Taylor & Francis Journals, vol. 14(4), pages 299-314.
    23. Sullivan, Ryan & Timmermann, Allan G & White, Halbert, 1998. "Data-Snooping, Technical Trading Rule Performance and the Bootstrap," CEPR Discussion Papers 1976, C.E.P.R. Discussion Papers.
    24. Amit Goyal & Ivo Welch, 1999. "Predicting the Equity Premium with Dividend Ratios," Yale School of Management Working Papers amz2437, Yale School of Management, revised 01 Nov 2002.
    25. Fernandez-Rodriguez, Fernando & Gonzalez-Martel, Christian & Sosvilla-Rivero, Simon, 2000. "On the profitability of technical trading rules based on artificial neural networks:: Evidence from the Madrid stock market," Economics Letters, Elsevier, vol. 69(1), pages 89-94, October.
    26. Bessembinder, Hendrik & Chan, Kalok, 1995. "The profitability of technical trading rules in the Asian stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 3(2-3), pages 257-284, July.
    27. Parisi, Franco & Vasquez, Alejandra, 2000. "Simple technical trading rules of stock returns: evidence from 1987 to 1998 in Chile," Emerging Markets Review, Elsevier, vol. 1(2), pages 152-164, September.
    28. Jennifer Conrad & Michael Cooper & Gautam Kaul, 2003. "Value versus Glamour," Journal of Finance, American Finance Association, vol. 58(5), pages 1969-1996, October.
    29. Sullivan, Ryan & Timmermann, Allan G & White, Halbert, 2001. "Forecast Evaluation with Shared Data Sets," CEPR Discussion Papers 3060, C.E.P.R. Discussion Papers.
    30. Mahendra Raj & David Thurston, 1996. "Effectiveness of simple technical trading rules in the Hong Kong futures markets," Applied Economics Letters, Taylor & Francis Journals, vol. 3(1), pages 33-36.
    31. Wayne E. Ferson & Sergei Sarkissian & Timothy Simin, 2002. "Spurious Regressions in Financial Economics?," NBER Working Papers 9143, National Bureau of Economic Research, Inc.
    32. Gencay, Ramazan, 1999. "Linear, non-linear and essential foreign exchange rate prediction with simple technical trading rules," Journal of International Economics, Elsevier, vol. 47(1), pages 91-107, February.
    33. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. " Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-64, December.
    34. Merton, Robert C., 1985. "On the current state of the stock market rationality hypothesis," Working papers 1717-85., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    35. Rapach, David E. & Wohar, Mark E., 2006. "In-sample vs. out-of-sample tests of stock return predictability in the context of data mining," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 231-247, March.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:revfin:v:23:y:2014:i:1:p:30-45. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.